
CS3551- DISTRIBUTED COMPUTING

UNIT I INTRODUCTION

Introduction: Definition-Relation to Computer System Components – Motivation – Message -Passing

Systems versus Shared Memory Systems – Primitives for Distributed Communication –

Synchronous versus Asynchronous Executions – Design Issues and Challenges; A Model of

Distributed Computations: A Distributed Program – A Model of Distributed Executions – Models of

Communication Networks – Global State of a Distributed System.

UNIT II LOGICAL TIME AND GLOBAL STATE

Logical Time: Physical Clock Synchronization: NTP – A Framework for a System of Logical Clocks

– Scalar Time – Vector Time; Message Ordering and Group Communication: Message Ordering

Paradigms – Asynchronous Execution with Synchronous Communication – Synchronous Program

Order on Asynchronous System – Group Communication – Causal Order – Total Order; Global

State and Snapshot Recording Algorithms: Introduction – System Model and Definitions – Snapshot

Algorithms for FIFO Channels

UNIT III DISTRIBUTED MUTEX AND DEADLOCK

Distributed Mutual exclusion Algorithms: Introduction – Preliminaries – Lamport’s algorithm –

RicartAgrawala’s Algorithm –– Token-Based Algorithms – Suzuki-Kasami’s Broadcast Algorithm;

Deadlock Detection in Distributed Systems: Introduction – System Model – Preliminaries – Models

of Deadlocks – Chandy-Misra-Haas Algorithm for the AND model and OR Model.

UNIT IV CONSENSUS AND RECOVERY

Consensus and Agreement Algorithms: Problem Definition – Overview of Results – Agreement in a

Failure-Free System(Synchronous and Asynchronous) – Agreement in Synchronous Systems with

Failures; Checkpointing and Rollback Recovery: Introduction – Background and Definitions – Issues

in Failure Recovery – Checkpoint-based Recovery – Coordinated Checkpointing Algorithm –

– Algorithm for Asynchronous Checkpointing and Recovery

UNIT V CLOUD COMPUTING

Definition of Cloud Computing – Characteristics of Cloud – Cloud Deployment Models – Cloud

Service Models – Driving Factors and Challenges of Cloud – Virtualization – Load Balancing –

Scalability and Elasticity – Replication – Monitoring – Cloud Services and Platforms: Compute

Services – Storage Services – Application Services

A distributed system is a collection of independent computers, interconnected via a

network, capable of collaborating on a task. Distributed computing is computing

performed in a distributed system.

UNIT I

INTRODUCTION

The process of computation was started from working on a single processor. This uni-

processor computing can be termed as centralized computing.

A distributed system is a collection of independent entities that cooperate to solve a problem

that cannot be individually solved. Distributed computing is widely used due to

advancements in machines; faster and cheaper networks. In distributed systems, the entire

network will be viewed as a computer. The multiple systems connected to the network will

appear as a single system to the user.

Features of Distributed Systems:

No common physical clock - It introduces the element of “distribution” in the system and

gives rise to the inherent asynchrony amongst the processors.

No shared memory - A key feature that requires message-passing for communication. This

feature implies the absence of the common physical clock.

Geographical separation – The geographically wider apart that the processors are, the

more representative is the system of a distributed system.

Autonomy and heterogeneity – Here the processors are “loosely coupled” in that they have

different speeds and each can be running a different operating system.

Issues in distributed systems

Heterogeneity

Openness

Security

Scalability

Failure handling

Concurrency

Transparency

Quality of service

1.2 Relation to Computer System Components

Fig 1.1: Example of a Distributed System

As shown in Fig 1.1, Each computer has a memory-processing unit and the computers are

connected by a communication network. Each system connected to the distributed networks

hosts distributed software which is a middleware technology. This drives the Distributed

System (DS) at the same time preserves the heterogeneity of the DS. The term computation

or run in a distributed system is the execution of processes to achieve a common goal.

Fig 1.2: Interaction of layers of network

The interaction of the layers of the network with the operating system and

middleware is shown in Fig 1.2. The middleware contains important library functions for

facilitating the operations of DS.

The distributed system uses a layered architecture to break down the complexity of system

design. The middleware is the distributed software that drives the distributed system, while

providing transparency of heterogeneity at the platform level

Examples of middleware: Object Management Group’s (OMG), Common Object Request

Broker Architecture (CORBA) [36], Remote Procedure Call (RPC), Message Passing

Interface (MPI)

1.3 Motivation

The following are the key points that acts as a driving force behind DS:

Inherently distributed computations: DS can process the computations at geographically

remote locations.

Resource sharing: The hardware, databases, special libraries can be shared between

systems without owning a dedicated copy or a replica. This is cost effective and reliable.

Access to geographically remote data and resources: Resources such as centralized

servers can also be accessed from distant locations.

Enhanced reliability: DS provides enhanced reliability, since they run on multiple copies of

resources.

The term reliability comprises of:

1. Availability: The resource/ service provided by the resource should be accessible

atall times

2. Integrity: the value/state of the resource should be correct and consistent.

3. Fault-Tolerance: Ability to recover from system failures

Increased performance/cost ratio: The resource sharing and remote access features of DS

naturally increase the performance / cost ratio.

Scalable: The number of systems operating in a distributed environment can be increased as

the demand increases.

1.4 MESSAGE-PASSING SYSTEMS VERSUS SHARED MEMORY SYSTEMS

Communication among processors takes place via shared data variables, and

control variables for synchronization among the processors. The communicationsbetween

the tasks in multiprocessor systems take place through two main modes:

Message passing systems:

• This allows multiple processes to read and write data to the message queue
without being connected to each other.

• Messages are stored on the queue until their recipient retrieves them.

Shared memory systems:

• The shared memory is the memory that can be simultaneously accessed by

multiple processes. This is done so that the processes can communicate with each
other.

• Communication among processors takes place through shared data variables, and
control variables for synchronization among the processors.

• Semaphores and monitors are common synchronization mechanisms on shared

memory systems.

• When shared memory model is implemented in a distributed environment, it is

termed as distributed shared memory.

Emulating message-passing on a shared memory system (MP → SM)

• The shared memory system can be made to act as message passing system. The

shared address space can be partitioned into disjoint parts, one part being

assigned to each processor.

• Send and receive operations care implemented by writing to and reading from the

destination/sender processor’s address space. The read and write operations are
synchronized.

• Specifically, a separate location can be reserved as the mailbox for each ordered
pair of processes.

Emulating shared memory on a message-passing system (SM → MP)

• This is also implemented through read and write operations. Each shared

location can be modeled as a separate process. Write to a shared location is

emulated by sending an update message to the corresponding owner process and

read operation to a shared location is emulated by sending a query message to the

owner process.

• This emulation is expensive as the processes has to gain access to other process

memory location. The latencies involved in read and write operations may be

high even when using shared memory emulation because the read and write

operations are implemented by using network-wide communication.

1.5 PRIMITIVES FOR DISTRIBUTED COMMUNICATION

Blocking / Non blocking / Synchronous / Asynchronous

• Message send and message receive communication primitives are done through

Send() and Receive(), respectively.

• A Send primitive has two parameters: the destination, and the buffer in the user
space that holds the data to be sent.

• The Receive primitive also has two parameters: the source from which the data is

to be received and the user buffer into which the data is to be received.
There are two ways of sending data when the Send primitive is called:

• Buffered: The standard option copies the data from the user buffer to the kernel

buffer. The data later gets copied from the kernel buffer onto the network. For the

Receive primitive, the buffered option is usually required because the data may

already have arrived when the primitive is invoked, and needs a storage place in

the kernel.

• Unbuffered: The data gets copied directly from the user buffer onto the network.

Blocking primitives

• The primitive commands wait for the message to be delivered. The execution of
the processes is blocked.

• The sending process must wait after a send until an acknowledgement is made

bythe receiver.

• The receiving process must wait for the expected message from the sending

process

• A primitive is blocking if control returns to the invoking process after the

processing for the primitive completes.

Non Blocking primitives

• If send is nonblocking, it returns control to the caller immediately, before the

message is sent.

• The advantage of this scheme is that the sending process can continue computing
in parallel with the message transmission, instead of having the CPU go idle.

• This is a form of asynchronous communication.

• A primitive is non-blocking if control returns back to the invoking process
immediately after invocation, even though the operation has not completed.

• For a non-blocking Send, control returns to the process even before the data

iscopied out of the user buffer.

For a non-blocking Receive, control returns to the process even before thedata may have

arrived from the sender.

Synchronous

• A Send or a Receive primitive is synchronous if both the Send() and Receive()

handshake with each other.

• The processing for the Send primitive completes only after the invoking

processor learns

• The processing for the Receive primitive completes when the data to be

received is copied into the receiver’s user buffer.

Asynchronous

• A Send primitive is said to be asynchronous, if control returns back to the
invoking process after the data item to be sent has been copied out of the user-

specified buffer.

• For non-blocking primitives, a return parameter on the primitive call returns a

system-generated handle which can be later used to check the status of

completion of the call.

• The process can check for the completion:

o checking if the handle has been flagged or posted
o issue a Wait with a list of handles as parameters: usually blocks until one

of the parameter handles is posted.

The send and receive primitives can be implemented in four modes:

• Blocking synchronous

• Non- blocking synchronous

• Blocking asynchronous

• Non- blocking asynchronous

Four modes of send operation

Blocking synchronous Send:

• The data gets copied from the user buffer to the kernel buffer and is then sent over

the network.

• After the data is copied to the receiver’s system buffer and a Receive call has been

issued, an acknowledgement back to the sender causes control to return to the

process that invoked the Send operation and completes the Send.

Non-blocking synchronous Send:

• Control returns back to the invoking process as soon as the copy of data from the user
buffer to the kernel buffer is initiated.

• A parameter in the non-blocking call also gets set with the handle of a location that

the user process can later check for the completion of the synchronous send
operation.

• The location gets posted after an acknowledgement returns from the receiver.

• The user process can keep checking for the completion of the non-blocking

synchronous Send by testing the returned handle, or it can invoke the blocking Wait

operation on the returned handle

Blocking asynchronous Send:

• The user process that invokes the Send is blocked until the data is copied from the

user’s buffer to the kernel buffer.

Non-blocking asynchronous Send:

• The user process that invokes the Send is blocked until the transfer of the data from
the user’s buffer to the kernel buffer is initiated.

• Control returns to the user process as soon as this transfer is initiated, and a parameter

in the non-blocking call also gets set with the handle of a location that the user

process can check later using the Wait operation for the completion of the

asynchronous Send.

The asynchronous Send completes when the data has been copied out of the user’s

buffer. The checking for the completion may be necessary if the user wants to reuse the

buffer from which the data was sent.

Modes of receive operation

Blocking Receive:

The Receive call blocks until the data expected arrives and is written in the specified

user buffer. Then control is returned to the user process.

Non-blocking Receive:

• The Receive call will cause the kernel to register the call and return the handle

of a location that the user process can later check for the completion of the

non-blocking Receive operation.

• This location gets posted by the kernel after the expected data arrives and is

copied to the user-specified buffer. The user process can check for then
completion of the non-blocking Receive by invoking the Wait operation on the

returned handle.

•

Processor synchrony indicates that all the processors execute in lock-step with their clocks

synchronized.

Processor Synchrony

To ensure that no processor begins executing the next step of code until all the processors

have completed executing the previous steps ofcode assigned to each of the processors.

Libraries and standards

There exists a wide range of primitives for message-passing. The message-passing interface

(MPI) library and the PVM (parallel virtual machine) library are used largely by the

scientific community

• Message Passing Interface (MPI): This is a standardized and portable message-

passing system to function on a wide variety of parallel computers. MPI primarily

addresses the message-passing parallel programming model: data is moved from the

address space of one process to that of another process through cooperative

operations on each process.

• Parallel Virtual Machine (PVM): It is a software tool for parallel networking of

computers. It is designed to allow a network of heterogeneous Unix and/or Windows

machines to be used as a single distributed parallel processor.

• Remote Procedure Call (RPC): The Remote Procedure Call (RPC) is a common

model of request reply protocol. In RPC, the procedure need not exist in the same

address space as the calling procedure.

• Remote Method Invocation (RMI): RMI (Remote Method Invocation) is a way that

a programmer can write object-oriented programming in which objects on different

computers can interact in a distributed network.

• Remote Procedure Call (RPC): RPC is a powerful technique for constructing

distributed, client-server based applications. In RPC, the procedure need not exist in

the same address space as the calling procedure. The two processes may be on the

same system, or they may be on different systems with a network connecting them.

• Common Object Request Broker Architecture (CORBA): CORBA describes a

messaging mechanism by which objects distributed over a network can communicate with

each other irrespective of the platform and language used to develop those objects.

1.6 SYNCHRONOUS VS ASYNCHRONOUS EXECUTIONS

The execution of process in distributed systems may be synchronous or asynchronous.

Asynchronous Execution:

A communication among processes is considered asynchronous, when every

communicating process can have a different observation of the order of the messages being

exchanged. In an asynchronous execution:

• there is no processor synchrony and there is no bound on the drift rate of processor
clocks

• message delays are finite but unbounded

• no upper bound on the time taken by a process

Fig: Asynchronous execution in message passing system

Synchronous Execution:

A communication among processes is considered synchronous when every process

observes the same order of messages within the system. In an synchronous execution:

• processors are synchronized and the clock drift rate between any two processors is

bounded

• message delivery times are such that they occur in one logical step or round

• upper bound on the time taken by a process to execute a

step.

Emulating an asynchronous system by a synchronous system (A → S)

An asynchronous program can be emulated on a synchronous system fairly trivially as the

synchronous system is a special case of an asynchronous system – all communication

finishes within the same round in which it is initiated.

Emulating a synchronous system by an asynchronous system (S → A)

A synchronous program can be emulated on an asynchronous system using a tool called

synchronizer.

Emulation for a fault free system

Fig 1.15: Emulations in a failure free message passing system

If system A can be emulated by system B, denoted A/B, and if a problem is not solvable in

B, then it is also not solvable in A. If a problem is solvable in A, it is also solvable in B.

Hence, in a sense, all four classes are equivalent in terms of computability in failure-free

systems.

1.7 DESIGN ISSUES AND CHALLENGES IN DISTRIBUTED SYSTEMS

The design of distributed systems has numerous challenges. They can be categorized

into:

• Issues related to system and operating systems design

• Issues related to algorithm design

• Issues arising due to emerging technologies

The above three classes are not mutually exclusive.

1.7.1 Issues related to system and operating systems design

The following are some of the common challenges to be addressed in designing a

distributed system from system perspective:

➢ Communication: This task involves designing suitable communication mechanisms

among the various processes in the networks.

Examples: RPC, RMI

➢ Processes: The main challenges involved are: process and thread management at

both client and server environments, migration of code between systems, design of software

and mobile agents.

➢ Naming: Devising easy to use and robust schemes for names, identifiers, and

addresses is essential for locating resources and processes in a transparent and scalable

manner. The remote and highly varied geographical locations make this task difficult.

➢ Synchronization: Mutual exclusion, leader election, deploying physical clocks,

global state recording are some synchronization mechanisms.

➢ Data storage and access Schemes: Designing file systems for easy and efficient data

storage with implicit accessing mechanism is very much essential for distributed operation

➢ Consistency and replication: The notion of Distributed systems goes hand in hand

with replication of data, to provide high degree of scalability. The replicas should be handed

with care since data consistency is prime issue.

➢ Fault tolerance: This requires maintenance of fail proof links, nodes, and processes.

Some of the common fault tolerant techniques are resilience, reliable communication,

distributed commit, checkpointing and recovery, agreement and consensus, failure detection,

and self-stabilization.

➢ Security: Cryptography, secure channels, access control, key management –

generation and distribution, authorization, and secure group management are some of the

security measure that is imposed on distributed systems.

➢ Applications Programming Interface (API) and transparency: The user

friendliness and ease of use is very important to make the distributed services to be used by

wide community. Transparency, which is hiding inner implementation policy from users, is

of the following types:

▪ Access transparency: hides differences in data representation

▪ Location transparency: hides differences in locations y providing uniform access to

data located at remote locations.

▪ Migration transparency: allows relocating resources without changing names.

▪ Replication transparency: Makes the user unaware whether he is working on

original or replicated data.

▪ Concurrency transparency: Masks the concurrent use of shared resources for the

user.

▪ Failure transparency: system being reliable and fault-tolerant.

➢ Scalability and modularity: The algorithms, data and services must be as distributed

as possible. Various techniques such as replication, caching and cache management, and

asynchronous processing help to achieve scalability.

1.7.2 Algorithmic challenges in distributed computing

➢ Designing useful execution models and frameworks

The interleaving model, partial order model, input/output automata model and the Temporal

Logic of Actions (TLA) are some examples of models that provide different degrees of

infrastructure.
➢ Dynamic distributed graph algorithms and distributed routing algorithms

• The distributed system is generally modeled as a distributed graph.

• Hence graph algorithms are the base for large number of higher level

communication,data dissemination, object location, and object search functions.

• These algorithms must have the capacity to deal with highly dynamic graph
characteristics. They are expected to function like routing algorithms.

• The performance of these algorithms has direct impact on user-perceived latency, data
traffic and load in the network.

➢ Time and global state in a distributed system

• The geographically remote resources demands the synchronization based on logical
time.

• Logical time is relative and eliminates the overheads of providing physical time for
applications. Logical time can
(i) Capture the logic and inter-process dependencies

(ii) track the relative progress at each process

• Maintaining the global state of the system across space involves the role of time

dimension for consistency. This can be done with extra effort in a coordinated manner.

• Deriving appropriate measures of concurrency also involves the time dimension, as
theexecution and communication speed of threads may vary a lot.

➢ Synchronization/coordination mechanisms

• Synchronization is essential for the distributed processes to facilitate concurrent

execution without affecting other processes.

• The synchronization mechanisms also involve resource management and
concurrency management mechanisms.

• Some techniques for providing synchronization are:

✓ Physical clock synchronization: Physical clocks usually diverge in their values due

to hardware limitations. Keeping them synchronized is a fundamental challenge to maintain

common time.

✓ Leader election: All the processes need to agree on which process will play the

roleof a distinguished process or a leader process. A leader is necessary even for many

distributed algorithms because there is often some asymmetry.

✓ Mutual exclusion: Access to the critical resource(s) has to be coordinated.

✓ Deadlock detection and resolution: This is done to avoid duplicate work,

and deadlock resolution should be coordinated to avoid unnecessary aborts of

processes.

✓ Termination detection: cooperation among the processes to detect the specific global

state of quiescence.

✓ Garbage collection: Detecting garbage requires coordination among the processes.

➢ Group communication, multicast, and ordered message delivery

• A group is a collection of processes that share a common context and collaborate on a

common task within an application domain. Group management protocols are needed for

group communication wherein processes can join and leave groups dynamically, or fail.

➢ Monitoring distributed events and predicates

• Predicates defined on program variables that are local to different processes are used

for specifying conditions on the global system state.

• On-line algorithms for monitoring such predicates are hence important.

• The specification of such predicates uses physical or logical time relationships.

➢ Distributed program design and verification tools

Methodically designed and verifiably correct programs can greatly reduce the overhead of

software design, debugging, and engineering. Designing these is a big challenge.
➢ Debugging distributed programs

Debugging distributed programs is much harder because of the concurrency and replications.

Adequate debugging mechanisms and tools are need of the hour.
➢ Data replication, consistency models, and caching

• Fast access to data and other resources is important in distributed systems.

 Managing replicas and their updates faces concurrency problems.

• Placement of the replicas in the systems is also a challenge because resources

usuallycannot be freely replicated.
➢ World Wide Web design – caching, searching, scheduling

• WWW is a commonly known distributed system.

• The issues of object replication and caching, prefetching of objects have to be done on
WWW also.

• Object search and navigationon the web are important functions in the operation of

the web.
➢ Distributed shared memory abstraction

• A shared memory is easier to implement since it does not involve managing the
communication tasks.

• The communication is done by the middleware by message passing.

• The overhead of shared memory is to be dealt by the middleware technology.

• Some of the methodologies that does the task of communication in shared memory
distributed systems are:

✓ Wait-free algorithms: The ability of a process to complete its execution irrespective

of the actions of other processes is wait free algorithm. They control the access to shared

resources in the shared memory abstraction. They are expensive.

✓ Mutual exclusion: Concurrent access of processes to a shared resource or data is

executed in mutually exclusive manner. Only one process is allowed to execute the critical

section at any given time. In a distributed system, shared variables or a local kernel cannot

be used to implement mutual exclusion. Message passing is the sole means for implementing

distributed mutual exclusion.

✓ Register constructions: Architectures must be designed in such a way that,

registersallows concurrent access without any restrictions on the concurrency permitted.

➢ Reliable and fault-tolerant distributed systems

The following are some of the fault tolerant strategies:

✓ Consensus algorithms: Consensus algorithms allow correctly functioning processes

to reach agreement among themselves in spite of the existence of malicious processes. The

goal of the malicious processes is to prevent the correctly functioning processes from

reaching agreement. The malicious processes operate by sending messages with misleading

information, to confuse the correctly functioning processes.

✓ Replication and replica management: The Triple Modular Redundancy (TMR)

technique is used in software and hardware implementation. TMR is a fault-tolerant form of

N-modular redundancy, in which three systems perform a process and that result is

processed by a majority-voting system to produce a single output.

✓ Voting and quorum systems: Providing redundancy in the active or passive

components in the system and then performing voting based on some quorum criterion is a

classical way of dealing with fault-tolerance. Designing efficient algorithms for this

purposeis the challenge.

✓ Distributed databases and distributed commit: The distributed databases should

also follow atomicity, consistency, isolation and durability (ACID) properties.

✓ Self-stabilizing systems: A self-stabilizing algorithm guarantee to take the system to

a good state even if a bad state were to arise due to some error. Self-stabilizing algorithms

require some in-built redundancy to track additional variables of the state and do extra work.

✓ Checkpointing and recovery algorithms: Checkpointing is periodically recording

the current state on secondary storage so that, in case of a failure. The entire computation is

not lost but can be recovered from one of the recently taken checkpoints. Checkpointing in

 distributed environment is difficult because if the checkpoints at the different processes are

not coordinated, the local checkpoints may become useless because they are inconsistent with

the checkpoints at other processes.

✓ Failure detectors: The asynchronous distributed do not have a bound on the message

transmission time. This makes the message passing very difficult, since the receiver do not

know the waiting time. Failure detectors probabilistically suspect another process as having

failed and then converge on a determination of the up/down status of the suspected process.

➢ Load balancing

The objective of load balancing is to gain higher throughput, and reduce the user

perceived latency. Load balancing may be necessary because of a variety off actors such

as high network traffic or high request rate causing the network connection to be a

bottleneck, or high computational load. The following are some forms of load balancing:

✓ Data migration: The ability to move data around in the system, based on the access

pattern of the users

✓ Computation migration: The ability to relocate processes in order to perform

are distribution of the workload.

✓ Distributed scheduling: This achieves a better turnaround time for the users by

using idle processing power in the system more efficiently.

➢ Real-time scheduling

Real-time scheduling becomes more challenging when a global view of the system state is

absent with more frequent on-line or dynamic changes. The message propagation delays

which are network-dependent are hard to control or predict. This is an hindrance to meet the

QoS requirements of the network.

➢ Performance

User perceived latency in distributed systems must be reduced. The common issues in

performance:

✓ Metrics: Appropriate metrics must be defined for measuring the performance of

theoretical distributed algorithms and its implementation.

✓ Measurement methods/tools: The distributed system is a complex entity

appropriate methodology and tools must be developed for measuring the performance

metrics.

1.7.3 Applications of distributed computing and newer challenges

The deployment environment of distributed systems ranges from mobile systems to

cloud storage. All the environments have their own challenges:
➢ Mobile systems

o Mobile systems which use wireless communication in shared broadcast
medium have issues related to physical layer such as transmission range,
power, battery power consumption, interfacing with wired internet, signal
processing and interference.

o The issues pertaining to other higher layers include routing, location
management, channel allocation, localization and position estimation, and
mobility management.

o Apart from the above mentioned common challenges, the architectural
differences of the mobile network demands varied treatment. The two
architectures are:

✓ Base-station approach (cellular approach): The geographical region is divided into

hexagonal physical locations called cells. The powerful base station transmits signals to all

other nodes in its range

✓ Ad-hoc network approach: This is an infrastructure-less approach which do not

haveany base station to transmit signals. Instead all the responsibility is distributed among

the mobile nodes.

✓ It is evident that both the approaches work in different environment with different

principles of communication. Designing a distributed system to cater the varied need is a

great challenge.

➢ Sensor networks

o A sensor is a processor with an electro-mechanical interface that is capable of
sensing physical parameters.

o They are low cost equipment with limited computational power and battery
life. They are designed to handle streaming data and route it to external
computer network and processes.

o They are susceptible to faults and have to reconfigure themselves.
o These features introduces a whole new set of challenges, such as position

estimation and time estimation when designing a distributed system .

➢ Ubiquitous or pervasive computing

o In Ubiquitous systems the processors are embedded in the environment to
perform application functions in the background.

o Examples: Intelligent devices, smart homes etc.
o They are distributed systems with recent advancements operating in wireless

environments through actuator mechanisms.

o They can be self-organizing and network-centric with limited resources.
➢ Peer-to-peer computing

o Peer-to-peer (P2P) computing is computing over an application layer
networkwhere all interactions among the processors are at a same level.

o This is a form of symmetric computation against the client sever paradigm.

o They are self-organizing with or without regular structure to the network.

Some of the key challenges include: object storage mechanisms, efficient object lookup, and retrieval in a

scalable manner; dynamic reconfiguration with nodes as well as objects joining and leaving the network

randomly; replication strategies to expedite object search; tradeoffs between object size latency and table

sizes; anonymity, privacy, and security

➢ Publish-subscribe, content distribution, and multimedia

o The users in present day require only the information of interest.
o In a dynamic environment where the information constantly fluctuates there

isgreat demand for

o Publish: an efficient mechanism for distributing this information
o Subscribe: an efficient mechanism to allow end users to indicate interest in

receiving specific kinds of information
o An efficient mechanism for aggregating large volumes of published

information and filtering it as per the user’s subscription filter.
o Content distribution refers to a mechanism that categorizes the information

based on parameters.

o The publish subscribe and content distribution overlap each other.

o Multimedia data introduces special issue because of its large size.
➢ Distributed agents

o Agents are software processes or sometimes robots that move around the
system to do specific tasks for which they are programmed.

o Agents collect and process information and can exchange such
informationwith other agents.

o Challenges in distributed agent systems include coordination mechanisms
among the agents, controlling the mobility of the agents, their software design
and interfaces.

➢ Distributed data mining

o Data mining algorithms process large amount of data to detect patterns and
trends in the data, to mine or extract useful information.

o The mining can be done by applying database and artificial intelligence
techniques to a data repository.

➢ Grid computing

• Grid computing is deployed to manage resources. For instance, idle CPU

cycles of machines connected to the network will be available to others.

• The challenges includes: scheduling jobs, framework for implementing quality

of service, real-time guarantees, security.
➢ Security in distributed systems

The challenges of security in a distributed setting include: confidentiality,

authentication and availability. This can be addressed using efficient and scalable solutions.

1.8 A MODEL OF DISTRIBUTED COMPUTATIONS: DISTRIBUTED PROGRAM

• A distributed program is composed of a set of asynchronous processes that

communicate by message passing over the communication network. Each process

may run on different processor.

• The processes do not share a global memory and communicate solely by passing

messages. These processes do not share a global clock that is instantaneously

accessible to these processes.

• Process execution and message transfer are asynchronous – a process may execute an
action spontaneously and a process sending a message does not wait for the delivery

of the message to be complete.

• The global state of a distributed computation is composed of the states of the
processes and the communication channels. The state of a process is characterized by

the state of its local memory and depends upon the context.

• The state of a channel is characterized by the set of messages in transit in the channel.

B

A MODEL OF DISTRIBUTED EXECUTIONS

• The execution of a process consists of a sequential execution of its actions.

• The actions are atomic and the actions of a process are modeled as three types of

events: internal events, message send events, and message receive events.

• An internal event changes the state of the process at which it occurs.

• A send event changes the state of the process that sends the message and the state of
the channel on which the message is sent.

• The execution of process pi produces a sequence of events e1, e2, e3, …, and it is

denoted by Hi: Hi =(hi→i). Here hiare states produced by pi and →are the casual

dependencies among events pi.

• →msgindicates the dependency that exists due to message passing between two events.

 Fig Space time distribution of distributed systems

• An internal event changes the state of the process at which it occurs. A send event
changes the state of the process that sends the message and the state of the channel

onwhich the message is sent.

• A receive event changes the state of the process that receives the message and the

stateof the channel on which the message is received.

Casual Precedence Relations

Causal message ordering is a partial ordering of messages in a distributed computing

environment. It is the delivery of messages to a process in the order in which they were

transmitted to that process.

It places a restriction on communication between processes by requiring that if the

transmission of message mi to process pk necessarily preceded the transmission of message

mj to the same process, then the delivery of these messages to that process must be ordered

such that mi is delivered before mj.

Happen Before Relation

The partial ordering obtained by generalizing the relationship between two process is called

as happened-before relation or causal ordering or potential causal ordering. This term

was coined by Lamport. Happens-before defines a partial order of events in a distributed

system. Some events can’t be placed in the order. If say A →B if A happens before B. A

is defined using the following rules:

✓ Local ordering:A and B occur on same process and A occurs before B.

✓ Messages: send(m) → receive(m) for any message m

✓ Transitivity: e → e’’ if e → e’ and e’ → e’’

• Ordering can be based on two situations:

1. If two events occur in same process then they occurred in the order observed.

2. During message passing, the event of sending message occurred before the event of

receiving it.

Lamports ordering is happen before relation denoted by →

• a→b, if a and b are events in the same process and a occurred before b.

• a→b, if a is the vent of sending a message m in a process and b is the event of the

same message m being received by another process.

• If a→b and b→c, then a→c. Lamports law follow transitivity property.

When all the above conditions are satisfied, then it can be concluded that a→b is casually

related. Consider two events c and d; c→d and d→c is false (i.e) they are not casually

related, then c and d are said to be concurrent events denoted as c||d.

Fig Communication between processes

Fig 1.22 shows the communication of messages m1 and m2 between three processes p1, p2

and p3. a, b, c, d, e and f are events. It can be inferred from the diagram that, a→b; c→d;

e→f; b->c; d→f; a→d; a→f; b→d; b→f. Also a||e and c||e.

Logical vs physical concurrency

Physical as well as logical concurrency is two events that creates confusion in

distributed systems.

Physical concurrency: Several program units from the same program that execute

simultaneously.

Logical concurrency: Multiple processors providing actual concurrency. The actual

execution of programs is taking place in interleaved fashion on a single processor.

Differences between logical and physical concurrency
Logical concurrency Physical concurrency

Several units of the same program execute

simultaneously on same processor, giving an
illusion to the programmer that they are
executing on multiple processors.

Several program units of the same program

execute at the same time on different

processors.

They are implemented through interleaving. They are implemented as uni-processor with
I/O
channels, multiple CPUs, network of uni or
multi CPU machines.

MODELS OF COMMUNICATION NETWORK

The three main types of communication models in distributed systems are:

FIFO (first-in, first-out): each channel acts as a FIFO message queue.

Non-FIFO (N-FIFO): a channel acts like a set in which a sender process adds messages and

receiver removes messages in random order.

Causal Ordering (CO): It follows Lamport’s law.

o The relation between the three models is given by CO FIFO N-FIFO.

A system that supports the causal ordering model satisfies the following property:

GLOBAL STATE

Distributed Snapshot represents a state in which the distributed system might have been in. A snapshot

of the system is a single configuration of the system.

• The global state of a distributed system is a collection of the local states of its components, namely,

the processes

and the communication channels. • The state of a process at any time is defined by the contents of

processor registers, stacks, local memory, etc. and depends on the local context of the distributed

application.

• The state of a channel is given by the set of messages in transit in the channel.

A system of logical clocks consists of a time domain T and a logical clock C. Elements of T form a

partially ordered set over a relation <. This relation is usually called the happened before or

causal precedence.

UNIT II

LOGICAL TIME & GLOBAL STATE

Three types of logical clock are maintained in distributed systems:

• Scalar clock

• Vector clock

• Matrix clock

In a system of logical clocks, every process has a logical clock that is advanced using a set

of rules. Every event is assigned a timestamp and the causality relation between events can

be generally inferred from their timestamps.

The timestamps assigned to events obey the fundamental monotonicity property; that is, if

an event a causally affects an event b, then the timestamp of a is smaller than the timestamp

of b.

A Framework for a system of logical clocks

The logical clock C is a function that maps an event e in a distributed system to an element
in the time domain T denoted as C(e).

such that

for any two events ei and ej,.

This monotonicity property is called the clock consistency condition. When T and C

satisfythe following condition,

Then the system of clocks is strongly consistent.

Implementing logical clocks

The two major issues in implanting logical clocks are:

Data structures: representation of each process

Protocols: rules for updating the data structures to ensure consistent conditions.

Data structures:

Each process pi maintains data structures with the given capabilities:
• A local logical clock (lci), that helps process pi measure its own progress.

• A logical global clock (gci), that is a representation of process pi’s local view of the

logicalglobal time. It allows this process to assign consistent timestamps to its local events.

Logical clocks are based on capturing chronological and causal relationships of processes and

ordering events based on these relationships.

Protocol:

The protocol ensures that a process’s logical clock, and thus its view of the global time,

ismanaged consistently with the following rules:

Rule 1: Decides the updates of the logical clock by a process. It controls send, receive and

other operations.

Rule 2: Decides how a process updates its global logical clock to update its view of the

global time and global progress. It dictates what information about the logical time is

piggybacked in a message and how this information is used by the receiving process to

update its view of the global time.

2.1.1 SCALAR TIME

Scalar time is designed by Lamport to synchronize all the events in distributed

systems. A Lamport logical clock is an incrementing counter maintained in each process.

When a process receives a message, it resynchronizes its logical clock with that sender

maintaining causal relationship.

The Lamport’s algorithm is governed using the following rules:

• The algorithm of Lamport Timestamps can be captured in a few rules:

• All the process counters start with value 0.

• A process increments its counter for each event (internal event, message sending,

message receiving) in that process.

• When a process sends a message, it includes its (incremented) counter value with the

message.

• On receiving a message, the counter of the recipient is updated to the greater of its

current counter and the timestamp in the received message, and then incremented by

one.

• If Ci is the local clock for process Pi then,

• if a and b are two successive events in Pi, then Ci(b) = Ci(a) + d1, where d1 > 0

• if a is the sending of message m by Pi, then m is assigned timestamp tm = Ci(a)

• if b is the receipt of m by Pj, then Cj(b) = max{Cj(b), tm + d2}, where d2 > 0

Rules of Lamport’s clock

 Fig 1.20: Evolution of scalar time

Rule 1: Ci(b) = Ci(a) + d1, where d1 > 0
Rule 2: The following actions are implemented when pi receives a message m with timestamp Cm:

a) Ci= max(Ci, Cm)

b) Execute Rule 1

c) deliver the message

Basic properties of scalar time:

1. Consistency property: Scalar clock always satisfies monotonicity. A monotonic clock

only increments its timestamp and never jump. Hence it is consistent.

2. Total Reordering: Scalar clocks order the events in distributed systems. But all the

events do not follow a common identical timestamp. Hence a tie breaking mechanism is

essential toorder the events. The tie breaking is done through:

• Linearly order process identifiers.

• Process with low identifier value will be given higher priority.

The term (t, i) indicates timestamp of an event, where t is its time of occurrence and i is the

identity of the process where it occurred.

A total order is generally used to ensure liveness properties in distributed algorithms.

3. Event Counting

If event e has a timestamp h, then h−1 represents the minimum logical duration,

counted in units of events, required before producing the event e. This is called height of the

event e. h-1 events have been produced sequentially before the event e regardless of the

processes that produced these events.

4. No strong consistency

The scalar clocks are not strongly consistent is that the logical local clock and logical

global clock of a process are squashed into one, resulting in the loss causal dependency

information among events at different processes.

2.1.2 VECTOR TIME

The ordering from Lamport's clocks is not enough to guarantee that if two events

precede one another in the ordering relation they are also causally related. Vector Clocks use

a vector counter instead of an integer counter. The vector clock of a system with N processes

is a vector of N counters, one counter per process. Vector counters have to follow the

following update rules:

• Initially, all counters are zero.

• Each time a process experiences an event, it increments its own counter in the vector

by one.

The total order relation () over two events x and y with timestamp (h, i) and (k, j) is given by:

The time domain is represented by a set of n-dimensional non-negative integer vectors in vector

time.

• Each time a process sends a message, it includes a copy of its own (incremented)

vector in the message.

• Each time a process receives a message, it increments its own counter in the vector by

one and updates each element in its vector by taking the maximum of the value in its

own vector counter and the value in the vector in the received message.

Rules of Vector Time

Fig 1.21: Evolution of vector scale

Basic properties of vector time

1. Isomorphism:

• “→” induces a partial order on the set of events that are produced by a distributed

execution.

• If events x and y are timestamped as vh and vk then,

• If the process at which an event occurred is known, the test to compare two

timestamps can be simplified as:

2. Strong consistency

The system of vector clocks is strongly consistent; thus, by examining the vector timestamp

of two events, we can determine if the events are causally related.

Rule 1: Before executing an event, process pi updates its local logical time

as follows:

Rule 2: Each message m is piggybacked with the vector clock vt of the sender

process at sending time. On the receipt of such a message (m,vt), process
pi executes the following sequence of actions:

1. update its global logical time

2. execute R1

3. deliver the message m

Clock synchronization is the process of ensuring that physically distributed processors have a

common notion of time.

3. Event counting

If an event e has timestamp vh[i], vh[j] denotes the number of events executed by process
pjthat causally precede e.

2.2 PHYSICAL CLOCK SYNCHRONIZATION: NEWTWORK TIME PROTOCOL

(NTP)

Centralized systems do not need clock synchronization, as they work under a common

clock. But the distributed systems do not follow common clock: each system functions based

on its own internal clock and its own notion of time. The time in distributed systems is

measured in the following contexts:

• The time of the day at which an event happened on a specific machine in the network.

• The time interval between two events that happened on different machines in the

network.

• The relative ordering of events that happened on different machines in the network.

Due to different clocks rates, the clocks at various sites may diverge with time, and

periodically a clock synchronization must be performed to correct this clock skew in

distributed systems. Clocks are synchronized to an accurate real-time standard like UTC

(Universal Coordinated Time). Clocks that must not only be synchronized with each other

but also have to adhere to physical time are termed physical clocks. This degree of

synchronization additionally enables to coordinate and schedule actions between multiple

computers connected to a common network.

Basic terminologies:
If Ca and Cb are two different clocks, then:

• Time: The time of a clock in a machine p is given by the function Cp(t),where Cp(t)=

tfor a perfect clock.

• Frequency: Frequency is the rate at which a clock progresses. The frequency at time t

of clock Ca is Ca
’(t).

• Offset: Clock offset is the difference between the time reported by a clock and the

real time. The offset of the clock Ca is given by Ca(t)− t. The offset of clock C a

relative toCb at time t ≥ 0 is given by Ca(t)- Cb(t)

• Skew: The skew of a clock is the difference in the frequencies of the clock and

theperfect clock. The skew of a clock Ca relative to clock Cb at timet is Ca
’(t)-

Cb
’(t).

• Drift (rate): The drift of clock Ca the second derivative of the clockvalue with

respectto time. The drift is calculated as:

Clocking Inaccuracies

Physical clocks are synchronized to an accurate real-time standard like UTC

(Universal Coordinated Time). Due to the clock inaccuracy discussed above, a timer (clock)

is said to be working within its specification if:

1. Offset delay estimation

A time service for the Internet - synchronizes clients to UTC Reliability from

redundant paths, scalable, authenticates time sources Architecture. The design of NTP

involves a hierarchical tree of time servers with primary server at the root synchronizes with

the UTC. The next level contains secondary servers, which act as a backup to the primary

server. At the lowest level is the synchronization subnet which has the clients.

2. Clock offset and delay estimation

A source node cannot accurately estimate the local time on the target node due to

varying message or network delays between the nodes. This protocol employs a very

common practice of performing several trials and chooses the trial with the minimum

delay.

Fig : Behavior of clocks

Fig a) Offset and delay estimation
between processes from same server

Fig b) Offset and delay estimation
between processes from different servers

Let T1, T2, T3, T4 be the values of the four most recent timestamps. The clocks A and B

arestable and running at the same speed. Let a = T1 − T3 and b = T2 − T4. If the network

delay difference from A to B and from B to A, called differential delay, is

small, the clock offset and roundtrip delay of B relative to A at time T4 are
approximatelygiven by the following:

Each NTP message includes the latest three timestamps T1, T2, andT3, while

T4 isdetermined upon arrival.

2.3 MESSAGE ORDERING AND GROUP COMMUNICATION

As the distributed systems are a network of systems at various physical locations, the

coordination between them should always be preserved. The message ordering means the

order of delivering the messages to the intended recipients. The common message order

schemes are First in First out (FIFO), non FIFO, causal order and synchronous order. In case

of group communication with multicasting, the causal and total ordering scheme is followed.

It is also essential to define the behaviour of the system in case of failures. The following

are the notations that are widely used in this chapter:

• Distributed systems are denoted by a graph (N, L).

• The set of events are represented by event set {E, }

• Message is denoted as mi: send and receive events as si and ri respectively.

• Send (M) and receive (M) indicates the message M send and received.

• a b denotes a and b occurs at the same process

• The send receive pairs ={(s, r) Ei x Ejcorresponds to r}

2.3.1 MESSAGE ORDERING PARADIGMS

The message orderings are

(i) non-FIFO

(ii) FIFO

(iii) causal order

(iv) synchronous order

There is always a trade-off between concurrency and ease of use and implementation.

Asynchronous Executions

• There cannot be any causal relationship between events in asynchronous execution.

• The messages can be delivered in any order even in non FIFO.

• Though there is a physical link that delivers the messages sent on it in FIFO order due

to the physical properties of the medium, a may be formed as a composite of

physical links and multiple paths may exist between the two end points of the logical

link.

An asynchronous execution (or A-execution) is an execution (E, ≺) for which the causality relation

is a partial order.

CO execution is an A-execution in which, for all,

If send(m1) ≺ send(m2) then for each common destination d of messages m1 and m2,

deliverd(m1) ≺deliverd(m2) must be satisfied.

Fig 2.1: a) FIFO executions b) non FIFO executions

FIFO executions

• The logical link is non-FIFO.

• A FIFO logical channel can be created over a non-FIFO channel by using a

separate numbering scheme to sequence the messages on each logical channel.

• The sender assigns and appends a <sequence_num, connection_id> tuple to each

message.

• The receiver uses a buffer to order the incoming messages as per the sender’s

sequence numbers, and accepts only the “next” message in sequence.

Causally Ordered (CO) executions

Fig: CO Execution

• Two send events s and s’ are related by causality ordering (not physical time

ordering), then a causally ordered execution requires that their corresponding receive

events r and r’ occur in the same order at all common destinations.

Applications of causal order:

Applications that requires update to shared data to implement distributed shared

memory, and fair resource allocation in distributed mutual exclusion.

Causal Order(CO) for Implementations:

A FIFO execution is an A-execution in which, for all

Other properties of causal ordering

1. Message Order (MO): A MO execution is an A-execution in which, for all

.

Fig: Not a CO execution

Empty Interval Execution: An execution (E ≺) is an empty-interval (EI)execution if

for each pair of events (s, r) ∈ T, the open interval set

in the partial order is empty.

An execution (E, ≺) is CO if and only if for each pair of events (s, r) ∈ T and eachevent e ∈ E,

• weak common past:

• weak common future:

Synchronous Execution

• When all the communication between pairs of processes uses synchronous send and

receives primitives, the resulting order is the synchronous order.

• The synchronous communication always involves a handshake between the receiver

and the sender, the handshake events may appear to be occurring instantaneously and

atomically.

Causality in a synchronous execution

The synchronous causality relation << on E is the smallest transitive relation that satisfies the

following: S1: If x occurs before y at the same process, then x<< y.

S2: If sr∈ T, then for all x ∈ E,[(x s ⇐⇒ x<<r) and (s<<x⇐⇒ r <<x)].

S3: If x <<y and y<<z, then x<<z

Synchronous Execution:

A synchronous execution (or S-execution) is an execution (E, <<)for which the causality relation<< is

partial order

Fig) Execution in an asynchronous system Fig) Execution in synchronous

Timestamping a synchronous execution

An execution(E ≺)is synchronous if and only if there exists a mapping from E to T (scalar timestamps)

such that

• for any message M, T(s(M))=T(r(M);

• for each process Pi, if ei ≺ ei1 then T(ei)< T(ei1) .

2.4 ASYNCHRONOUS EXECUTION WITH SYNCHRONOUS COMMUNICATION

When all the communication between pairs of processes is by using synchronous send

and receive primitives, the resulting order is synchronous order. If a program is written for an

asynchronous system, say a FIFO system, will it still execute correctly if the communication

is done by synchronous primitives. There is a possibility that the program may deadlock,

Fig) A communication program for an asynchronous system deadlock when using

synchronous primitives

Fig) Illustrations of asynchronous crown of size 2 crown of size 3

Execution and of crowns

Crown of size 2

Realizable Synchronous Communication (RSC)

A-execution can be realized under synchronous communication is called a realizable with

synchronous communication (RSC).

An execution can be modeled to give a total order that extends the partial order (E, ≺).

In an A-execution, the messages can be made to appear instantaneous if there exist a linear extension of

the execution, such that each send event is immediately followed by its corresponding receive event in

this linear extension.

Non-separated linear extension is an extension of (E, ≺) is a linear extension of (E, ≺) such that for

each pair (s, r) ∈ T, the interval { x∈ E s ≺ x ≺ r } is empty.

A-execution (E, ≺) is an RSC execution if and only if there exists a non-separated linear extension of
the partial order (E, ≺).

In the non-separated linear extension, if the adjacent send event and its corresponding receive event are

viewed atomically, then that pair of events shares a common past and a common future with each other.

Crown

Let E be an execution. A crown of size k in E is a sequence <(si, ri), i ∈{0,…, k-1}> of pairs of

corresponding send and receive events such that: s0 ≺ r1, s1 ≺ r2, sk−2 ≺ rk−1, sk−1 ≺ r0.

The crown is <(s1, r1) (s2, r2)> as we have s1 ≺ r2 and s2 ≺ r1. Cyclic dependencies may exist in a

crown. The crown criterion states that an A-computation is RSC, i.e., it can be realized on a system
with synchronous communication, if and only if it contains no crown.

Timestamp criterion for RSC execution

An execution (E, ≺) is RSC if and only if there exists a mapping from E to T (scalar timestamps)

such that

Synchronous programs on asynchronous systems

− A (valid) S-execution can be trivially realized on an asynchronous system by

scheduling the messages in the order in which they appear in the S-execution.

− The partial order of the S-execution remains unchanged but the communication

occurs on an asynchronous system that uses asynchronous communication primitives.

− Once a message send event is scheduled, the middleware layer waits for

acknowledgment; after the ack is received, the synchronous send primitive completes.

2.5 SYNCHRONOUS PROGRAM ORDER ON AN ASYNCHRONOUS SYSTEM

Non deterministic programs

The partial ordering of messages in the distributed systems makes the repeated runs of

the same program will produce the same partial order, thus preserving deterministic nature.

But sometimes the distributed systems exhibit non determinism:

• A receive call can receive a message from any sender who has sent a message, if the

expected sender is not specified.

• Multiple send and receive calls which are enabled at a process can be executed in an

interchangeable order.

• If i sends to j, and j sends to i concurrently using blocking synchronous calls, there

results a deadlock.

• There is no semantic dependency between the send and the immediately following

receive at each of the processes. If the receive call at one of the processes can be

scheduled before the send call, then there is no deadlock.

Rendezvous

Rendezvous systems are a form of synchronous communication among an arbitrary

number of asynchronous processes. All the processes involved meet with each other, i.e.,

communicate synchronously with each other at one time. Two types of rendezvous systems

are possible:

• Binary rendezvous: When two processes agree to synchronize.

• Multi-way rendezvous: When more than two processes agree to synchronize.

Features of binary rendezvous:

• For the receive command, the sender must be specified. However, multiple recieve

commands can exist. A type check on the data is implicitly performed.

• Send and received commands may be individually disabled or enabled. A command is

disabled if it is guarded and the guard evaluates to false. The guard would likely

contain an expression on some local variables.

• Synchronous communication is implemented by scheduling messages under the

covers using asynchronous communication.

• Scheduling involves pairing of matching send and receives commands that are both

enabled. The communication events for the control messages under the covers do not

alter the partial order of the execution.

2.3.2 Binary rendezvous algorithm

If multiple interactions are enabled, a process chooses one of them and tries to

synchronize with the partner process. The problem reduces to one of scheduling messages

satisfying the following constraints:

• Schedule on-line, atomically, and in a distributed manner.

• Schedule in a deadlock-free manner (i.e., crown-free).

• Schedule to satisfy the progress property in addition to the safety property.

Steps in Bagrodia algorithm

1. Receive commands are forever enabled from all processes.

2. A send command, once enabled, remains enabled until it completes, i.e., it is not

possible that a send command gets before the send is executed.

3. To prevent deadlock, process identifiers are used to introduce asymmetry to break

potential crowns that arise.

4. Each process attempts to schedule only one send event at any time.

The message (M) types used are: M, ack(M), request(M), and permission(M). Execution

events in the synchronous execution are only the send of the message M and receive of the

message M. The send and receive events for the other message types – ack(M), request(M),

and permission(M) which are control messages. The messages request(M), ack(M), and

permission(M) use M’s unique tag; the message M is not included in these messages.

(message types)

M, ack(M), request(M), permission(M)

(1) Pi wants to execute SEND(M) to a lower priority process Pj:

Pi executes send(M) and blocks until it receives ack(M) from Pj . The send event SEND(M)

 now completes.

Any M’ message (from a higher priority processes) and request(M’) request for

synchronization (from a lower priority processes) received during the blocking period are

queued.

(2) Pi wants to execute SEND(M) to a higher priority

process Pj: (2a) Pi seeks permission from Pj by executing

send(request(M)).

.(2b) While Pi is waiting for permission, it remains unblocked.

(i) If a message M’ arrives from a higher priority process Pk, Pi accepts M’ by scheduling a

RECEIVE(M’) event and then executes send(ack(M’)) to Pk.

(ii) If a request(M’) arrives from a lower priority process Pk, Pi executes

send(permission(M’)) to Pk and blocks waiting for the messageM’. WhenM’ arrives, the

RECEIVE(M’) event is executed.

(2c) When the permission(M) arrives, Pi knows partner Pj is synchronized and Pi executes

send(M). The SEND(M) now completes.

(3) request(M) arrival at Pi from a lower priority process Pj:

At the time a request(M) is processed by Pi, process Pi executes send(permission(M)) to Pj

and blocks waiting for the message M. When M arrives, the RECEIVE(M) event is executed

and the process unblocks.

(4) Message M arrival at Pi from a higher priority process Pj:

At the time a message M is processed by Pi, process Pi executes RECEIVE(M) (which is

assumed to be always enabled) and then send(ack(M)) to Pj .

(5) Processing when Pi is unblocked:

When Pi is unblocked, it dequeues the next (if any) message from the queue and processes it

as a message arrival (as per rules 3 or 4).

Fig 2.5: Bagrodia Algorithm

2.6 GROUP COMMUNICATION

Group communication is done by broadcasting of messages. A message broadcast is

the sending of a message to all members in the distributed system. The communication may

be

• Multicast: A message is sent to a certain subset or a group.

• Unicasting: A point-to-point message communication.

The network layer protocol cannot provide the following functionalities:

▪ Application-specific ordering semantics on the order of delivery of messages.

▪ Adapting groups to dynamically changing membership.

▪ Sending multicasts to an arbitrary set of processes at each send event.

▪ Providing various fault-tolerance semantics.

▪ The multicast algorithms can be open or closed group.

2.7 CAUSAL ORDER (CO)

In the context of group communication, there are two modes of communication:

causal order and total order. Given a system with FIFO channels, causal order needs to be

explicitly enforced by a protocol. The following two criteria must be met by a causal

ordering protocol:

• Safety: In order to prevent causal order from being violated, a message M that

arrives at a process may need to be buffered until all system wide messages sent in the

causal past of the send (M) event to that same destination have already arrived. The

arrival of a message is transparent to the application process. The delivery event

corresponds to the receive event in the execution model.

• Liveness: A message that arrives at a process must eventually be delivered to the

process.

The Raynal–Schiper–Toueg algorithm

• Each message M should carry a log of all other messages sent causally before M’s

send event, and sent to the same destination dest(M).

• The Raynal–Schiper–Toueg algorithm canonical algorithm is a representative of

several algorithms that reduces the size of the local space and message space

overhead by various techniques.

• This log can then be examined to ensure whether it is safe to deliver a message.

• All algorithms aim to reduce this log overhead, and the space and time overhead of

maintaining the log information at the processes.

• To distribute this log information, broadcast and multicast communication is used.

• The hardware-assisted or network layer protocol assisted multicast cannot efficiently

provide features:

➢ Application-specific ordering semantics on the order of delivery of messages.

➢ Adapting groups to dynamically changing membership.

➢ Sending multicasts to an arbitrary set of processes at each send event.

➢ Providing various fault-tolerance semantics

The Kshem Kalyani – Singhal Optimal Algorithm

An optimal CO algorithm stores in local message logs and propagates on messages,

information of the form d is a destination of M about a message M sent in the causal past, as

long as and only as long as:

Propagation Constraint I: it is not known that the message M is delivered to d.

Propagation Constraint II: it is not known that a message has been sent to d in the causal

future of Send(M), and hence it is not guaranteed using a reasoning based on transitivity that

the message M will be delivered to d in CO.

Fig : Conditions for causal ordering

The Propagation Constraints also imply that if either (I) or (II) is false, the information

“d ∈ M.Dests” must not be stored or propagated, even to remember that (I) or (II) has been

falsified:

▪ not in the causal future of Deliverd(M1, a)

▪ not in the causal future of e k, c where d ∈Mk,cDests and there is no

other message sent causally between Mi,a and Mk, c to the same

destination d.

Information about messages:

(i) not known to be delivered

(ii) not guaranteed to be delivered in CO, is explicitly tracked by the algorithm using (source,

timestamp, destination) information.

Information about messages already delivered and messages guaranteed to be delivered in

CO is implicitly tracked without storing or propagating it, and is derived from the explicit

information. The algorithm for the send and receive operations is given in Fig. 2.7 a) and b).

Procedure SND is executed atomically. Procedure RCV is executed atomically except for a

possible interruption in line 2a where a non-blocking wait is required to meet the Delivery

Condition.

Fig 2.7 a) Send algorithm by Kshemkalyani–Singhal to optimally implement causal

ordering

Fig b) Receive algorithm by Kshemkalyani–Singhal to optimally implement causal

ordering

The data structures maintained are sorted row–major and then column–major:

1. Explicit tracking:

▪ Tracking of (source, timestamp, destination) information for messages (i) not known to be

delivered and (ii) not guaranteed to be delivered in CO, is done explicitly using the

I.Dests field of entries in local logs at nodes and o.Dests field of entries in messages.

▪ Sets li,a Dests and oi,a. Dests contain explicit information of destinations to which Mi,ais

not guaranteed to be delivered in CO and is not known to be delivered.

▪ The information about d ∈Mi,a .Dests is propagated up to the earliest events on all causal

paths from (i, a) at which it is known that Mi,a is delivered to d or is guaranteed to be

delivered to d in CO.

2. Implicit tracking:

▪ Tracking of messages that are either (i) already delivered, or (ii) guaranteed to be

delivered in CO, is performed implicitly.

▪ The information about messages (i) already delivered or (ii) guaranteed to be

delivered in CO is deleted and not propagated because it is redundant as far as

enforcing CO is concerned.

▪ It is useful in determining what information that is being carried in other messages

and is being stored in logs at other nodes has become redundant and thus can be

purged.

▪ The semantics are implicitly stored and propagated. This information about messages

that are (i) already delivered or (ii) guaranteed to be delivered in CO is tracked

without explicitly storing it.

▪ The algorithm derives it from the existing explicit information about messages (i) not

known to be delivered and (ii) not guaranteed to be delivered in CO, by examining

only oi,aDests or li,aDests, which is a part of the explicit information.

Fig 2.8: Illustration of propagation

constraintsMulticasts M5,1and M4,1
Message M5,1 sent to processes P4 and P6 contains the piggybacked information M5,1.

Dest= {P4, P6}. Additionally, at the send event (5, 1), the information M5,1.Dests = {P4,P6}

is also inserted in the local log Log5. When M5,1 is delivered to P6, the (new) piggybacked

information P4 ∈ M5,1 .Dests is stored in Log6 as M5,1.Dests ={P4} information about P6 ∈

M5,1.Dests which was needed for routing, must not be stored in Log6 because of constraint

I.
In the same way when M5,1 is delivered to process P4

at event (4, 1), only the new piggybacked information P6 ∈ M5,1 .Dests is inserted in Log4 as

M5,1.Dests =P6which is later propagated during multicast M4,2.

Multicast M4,3

At event (4, 3), the information P6 ∈M5,1.Dests in Log4 is propagated on multicast M4,3only

to process P6 to ensure causal delivery using the Delivery Condition. The piggybacked

information on message M4,3sent to process P3must not contain this information because of

constraint II. As long as any future message sent to P6 is delivered in causal order w.r.t.
M4,3sent to P6, it will also be delivered in causal order w.r.t. M5,1. And as M5,1 is already

delivered to P4, the information M5,1Dests = ∅ is piggybacked on M4,3 sent to P 3.

Similarly, the information P6 ∈ M5,1Dests must be deleted from Log4 as it will no longer be

needed, because of constraint II. M5,1Dests = ∅ is stored in Log4 to remember that M5,1 has

been delivered or is guaranteed to be delivered in causal order to all its destinations.

Learning implicit information at P2 and P3

When message M4,2is received by processes P2 and P3, they insert the (new)

piggybacked information in their local logs, as information M5,1.Dests = P6. They both

continue to storethis in Log2 and Log3 and propagate this information on multicasts until

they learn at events(2, 4) and (3, 2) on receipt of messages M3,3and M4,3, respectively, that

any future message is expected to be delivered in causal order to process P6, w.r.t. M5,1sent

toP6. Hence byconstraint II, this information must be deleted from Log2 andLog3. The

flow of events isgiven by;

• When M4,3 with piggybacked information M5,1Dests = ∅ is received byP3at (3, 2),

this is inferred to be valid current implicit information about multicast M5,1because

the log Log3 already contains explicit informationP6 ∈M5,1.Dests about that

multicast. Therefore, the explicit information in Log3 is inferred to be old and must be

deleted to achieve optimality. M5,1Dests is set to ∅ in Log3.

• The logic by which P2 learns this implicit knowledge on the arrival of M3,3is

identical.

Processing at P6

When message M5,1 is delivered to P6, only M5,1.Dests = P4 is added to Log6. Further,

P6 propagates only M5,1.Dests = P4 on message M6,2, and this conveys the current

implicit information M5,1 has been delivered to P6 by its very absence in the explicit

information.

• When the information P6 ∈ M5,1Dests arrives on M4,3, piggybacked as M5,1 .Dests

= P6 it is used only to ensure causal delivery of M4,3 using the Delivery

Condition,and is not inserted in Log6 (constraint I) – further, the presence of M5,1

.Dests = P4 in Log6 implies the implicit information that M5,1 has already been

delivered to P6. Also, the absence of P4 in M5,1 .Dests in the explicit

piggybacked information implies the implicit information that M5,1 has been

delivered or is guaranteed to be delivered in causal order to P4, and, therefore,

M5,1. Dests is set to ∅ in Log6.

• When the information P6 ∈ M5,1 .Dests arrives on M5,2 piggybacked as M5,1. Dests

= {P4, P6} it is used only to ensure causal delivery of M4,3 using the Delivery

Condition, and is not inserted in Log6 because Log6 contains M5,1 .Dests = ∅,

which gives the implicit information that M5,1 has been delivered or is

guaranteedto be delivered in causal order to both P4 and P6.

Processing at P1

• When M2,2arrives carrying piggybacked information M5,1.Dests = P6 this

(new)information is inserted in Log1.

• When M6,2arrives with piggybacked information M5,1.Dests ={P4}, P1learns

implicit information M5,1has been delivered to P6 by the very absence of explicit

information P6 ∈ M5,1.Dests in the piggybacked information, and hence marks

information P6 ∈ M5,1Dests for deletion from Log1

• The information “P6 ∈M5,1.Dests piggybacked on M2,3,which arrives at P 1, is

inferred to be outdated using the implicit knowledge derived from M5,1.Dest= ∅”

inLog1.

For each pair of processes Pi and Pj and for each pair of messages Mx and My that are delivered to

both the processes, Pi is delivered Mx before My if and only if Pj is delivered Mxbefore My.

2.8 TOTAL ORDER

Centralized Algorithm for total ordering

Each process sends the message it wants to broadcast to a centralized process, which

relays all the messages it receives to every other process over FIFO channels.

Complexity: Each message transmission takes two message hops and exactly n messages

in a system of n processes.

Drawbacks: A centralized algorithm has a single point of failure and congestion, and is

not an elegant solution.

Three phase distributed algorithm

Three phases can be seen in both sender and receiver side.

Sender

Phase 1

• In the first phase, a process multicasts the message M with a locally unique tag and

the local timestamp to the group members.

Phase 2

• The sender process awaits a reply from all the group members who respond with a

tentative proposal for a revised timestamp for that message M.

• The await call is non-blocking.

Phase 3

• The process multicasts the final timestamp to the group.

Fig) Sender side of three phase distributed algorithm

Receiver Side

Phase 1

• The receiver receives the message with a tentative timestamp. It updates the variable

priority that tracks the highest proposed timestamp, then revises the proposed

timestamp to the priority, and places the message with its tag and the revised

timestamp at the tail of the queue temp_Q. In the queue, the entry is marked as

undeliverable.

Phase 2

• The receiver sends the revised timestamp back to the sender. The receiver then waits

in a non-blocking manner for the final timestamp.

Phase 3

• The final timestamp is received from the multi caster. The corresponding

messageentry in temp_Q is identified using the tag, and is marked as deliverable

after the revised timestamp is overwritten by the final timestamp.

• The queue is then resorted using the timestamp field of the entries as the key. As the

queue is already sorted except for the modified entry for the message under

consideration, that message entry has to be placed in its sorted position in the queue.

• If the message entry is at the head of the temp_Q, that entry, and all consecutive

subsequent entries that are also marked as deliverable, are dequeued from temp_Q,

and enqueued in deliver_Q.

Complexity

This algorithm uses three phases, and, to send a message to n − 1 processes, it uses 3(n – 1)

messages and incurs a delay of three message hops
Example

An example execution to illustrate the algorithm is given in Figure 6.14. Here, A and B

multicast to a set of destinations and C and D are the common destinations for both

multicasts. •

Figure (a) The main sequence of steps is as follows:

1. A sends a REVISE_TS(7) message, having timestamp 7. B sends a REVISE_TS(9)

message, having timestamp 9.

2. C receives A’s REVISE_TS(7), enters the corresponding message in temp_Q, and marks

it as undeliverable; priority = 7. C then sends PROPOSED_TS(7) message to A

3. D receives B’s REVISE_TS(9), enters the corresponding message in temp_Q, and marks

it as undeliverable; priority = 9. D then sends PROPOSED_TS(9) message to B.

4. C receives B’s REVISE_TS(9), enters the corresponding message in temp_Q, and marks

it as undeliverable; priority = 9. C then sends PROPOSED_TS(9) message to B.

5. D receives A’s REVISE_TS(7), enters the corresponding message in temp_Q, and marks

it as undeliverable; priority = 10. D assigns a tentative timestamp value of 10, which is

greater than all of the times tamps on REVISE_TSs seen so far, and then sends

PROPOSED_TS(10) message to A.

The state of the system is as shown in the figure

Fig) An example to illustrate the three-phase total ordering algorithm. (a) A snapshot for

PROPOSED_TS and REVISE_TS messages. The dashed lines show the further execution

after the snapshot. (b) The FINAL_TS messages in the example.

Figure (b) The continuing sequence of main steps is as follows:

6. When A receives PROPOSED_TS(7) from C and PROPOSED_TS(10) from D, it

computes the final timestamp as max710=10, and sends FINAL_TS(10) to C and D.

7. When B receives PROPOSED_TS(9) from C and PROPOSED_TS(9) from D, it

computes the final timestamp as max99= 9, and sends FINAL_TS(9) to C and D.

8. C receives FINAL_TS(10) from A, updates the corresponding entry in temp_Q with the

timestamp, resorts the queue, and marks the message as deliverable. As the message is not

at the head of the queue, and some entry ahead of it is still undeliverable, the message is

not moved to delivery_Q.

9. D receives FINAL_TS(9) from B, updates the corresponding entry in temp_Q by

marking the corresponding message as deliverable, and resorts the queue. As the message

is at the head of the queue, it is moved to delivery_Q. This is the system snapshot shown in

Figure (b).

The following further steps will occur:

10. When C receives FINAL_TS(9) from B, it will update the correspond ing entry in

temp_Q by marking the corresponding message as deliv erable. As the message is at the

head of the queue, it is moved to the delivery_Q, and the next message (of A), which is

also deliverable, is also moved to the delivery_Q.

11. When D receives FINAL_TS(10) from A, it will update the corre sponding entry in

temp_Q by marking the corresponding message as deliverable. As the message is at the

head of the queue, it is moved to the delivery_Q

2.9 GLOBAL STATE AND SNAPSHOT RECORDING ALGORITHMS

• A distributed computing system consists of processes that do not share a common

memory and communicate asynchronously with each other by message passing.

• Each component of has a local state. The state of the process is the local memory and

ahistory of its activity.

• The state of a channel is characterized by the set of messages sent along the channel

less the messages received along the channel. The global state of a distributed system

isa collection of the local states of its components.

• If shared memory were available, an up-to-date state of the entire system would be

available to the processes sharing the memory.

• The absence of shared memory necessitates ways of getting a coherent and complete

view of the system based on the local states of individual processes.

• A meaningful global snapshot can be obtained if the components of the distributed

system record their local states at the same time.

• This would be possible if the local clocks at processes were perfectly synchronized or

if there were a global system clock that could be instantaneously read by the

processes.

• If processes read time from a single common clock, various in determinate

transmission delays during the read operation will cause the processes to identify

various physical instants as the same time.

2.9.1 System Model

• The system consists of a collection of n processes, p1, p2,…,pn that are

connectedby channels.

• Let Cij denote the channel from process pi to process pj.

• Processes and channels have states associated with them.

Law of conservation of messages: Every message mijthat is recorded as sent in the local state of a

process pi must be captured in the state of the channel Cij or in the collected local state of the

receiver process pj.

• The state of a process at any time is defined by the contents of processor registers,

stacks, local memory, etc., and may be highly dependent on the local context of

the distributed application.

• The state of channel Cij, denoted by SCij, is given by the set of messages in transit

in the channel.

• The events that may happen are: internal event, send (send (mij)) and receive

(rec(mij)) events.

• The occurrences of events cause changes in the process state.

• A channel is a distributed entity and its state depends on the local states of the

processes on which it is incident.

• The transit function records the state of the channel Cij.

• In the FIFO model, each channel acts as a first-in first-out message queue and,

thus, message ordering is preserved by a channel.

• In the non-FIFO model, a channel acts like a set in which the sender process

adds messages and the receiver process removes messages from it in a random

order.

2.9.2 A consistent global state

The global state of a distributed system is a collection of the local states of the

processes and the channels. The global state is given by:

The two conditions for global state are:

Condition 1 preserves law of conservation of messages. Condition C2 states that in

thecollected global state, for every effect, its cause must be present.

➢ In a consistent global state, every message that is recorded as received is also recorded

as sent. Such a global state captures the notion of causality that a message cannot be

received if it was not sent.

➢ Consistent global states are meaningful global states and inconsistent global states are

not meaningful in the sense that a distributed system can never be in an inconsistent

state.

2.9.3 Interpretation of cuts

• Cuts in a space–time diagram provide a powerful graphical aid in representing and

reasoning about the global states of a computation. A cut is a line joining an arbitrary

point on each process line that slices the space–time diagram into a PAST and a

FUTURE.

A snapshot captures the local states of each process along with the state of each communication channel.

• A consistent global state corresponds to a cut in which every message received in the

PAST of the cut has been sent in the PAST of that cut. Sucha cut is known as a

consistent cut.

• In a consistent snapshot, all the recorded local states of processes are concurrent; that

is, the recorded local state of no process casually affects the recorded local state of

anyother process.

Issues in recording global state

The non-availability of global clock in distributed system, raises the following issues:

Issue 1:

How to distinguish between the messages to be recorded in the snapshot from those

not to be recorded?
Answer:

• Any message that is sent by a process before recording its snapshot, must

berecorded in the global snapshot (from C1).

• Any message that is sent by a process after recording its snapshot, must not

berecorded in the global snapshot (from C2).

Issue 2:

How to determine the instant when a process takes its snapshot?

The answer
Answer:

A process pj must record its snapshot before processing a message mij that was sent byprocess pi after

recording its snapshot

2.9.4 SNAPSHOT ALGORITHMS FOR FIFO CHANNELS

Each distributed application has number of processes running on different physical

servers. These processes communicate with each other through messaging channels.

Snapshots are required to:

• Checkpointing

• Collecting garbage

• Detecting deadlocks

• Debugging

Chandy–Lamport algorithm

• The algorithm will record a global snapshot for each process channel.

• The Chandy-Lamport algorithm uses a control message, called a marker.

• After a site has recorded its snapshot, it sends a marker along all of its outgoing

channels before sending out any more messages.

• Since channels are FIFO, a marker separates the messages in the channel into those to

be included in the snapshot from those not to be recorded in the snapshot.

• This addresses issue I1. The role of markers in a FIFO system is to act as delimiters

for the messages in the channels so that the channel state recorded by the process

at the receiving end of the channel satisfies the condition C2.

Fig 2.10: Chandy–Lamport algorithm

Initiating a snapshot
• Process Pi initiates the snapshot

• Pi records its own state and prepares a special marker message.

• Send the marker message to all other processes.

• Start recording all incoming messages from channels Cij for j not equal to i.

Propagating a snapshot

• For all processes Pjconsider a message on channel Ckj.

• If marker message is seen for the first time:

− Pjrecords own sate and marks Ckj as empty

− Send the marker message to all other processes.

− Record all incoming messages from channels Clj for 1 not equal to j or k.

− Else add all messages from inbound channels.

Terminating a snapshot

• All processes have received a marker.

• All process have received a marker on all the N-1 incoming channels.

• A central server can gather the partial state to build a global snapshot.

Correctness of the algorithm

• Since a process records its snapshot when it receives the first marker on any

incoming channel, no messages that follow markers on the channels incoming to it are

recorded in the process’s snapshot.

• A process stops recording the state of an incoming channel when a marker is received

on that channel.

• Due to FIFO property of channels, it follows that no message sent after the marker on that

channel is recorded in the channel state. Thus, condition C2 is satisfied.

• When a process pj receives message mij that precedes the marker on channel Cij, it acts

as follows: if process pj has not taken its snapshot yet, then it includes mij in its recorded

snapshot. Otherwise, it records mij in the state of the channel Cij. Thus, condition C1

issatisfied.

Complexity

The recording part of a single instance of the algorithm requires O(e) messages

and O(d) time, where e is the number of edges in the network and d is the diameter of

thenetwork.

Properties of the recorded global state

Fig) Timing diagram of two possible executions of the banking examples

1. (Markers shown using dashed-and-dotted arrows.) Let site S1 initiate the algorithm just after t1.

Site S1 records its local state (account A=$550) and sends a marker to site S2. The marker is

received by site S2 after t4. When site S2 receives the marker, it records its local state

(account B=$170), the state of channel C12 as $0, and sends a marker along channel C21.

When site S1 receives this marker, it records the state of channel C21 as $80. The $800 amount

in the system is conserved in the recorded global state,

A=$550 B=$170 C12 =$0 C21 =$80

2. (Markers shown using dotted arrows.) Let site S1 initiate the algorithm just after t0 and before

Sending the $50 for S2. Site S1 records its local state (account A = $600) and sends a marker to

S2. The marker is received by site S2 between t2 and t3. When site S2 receives the marker, it

records its local state (account B = $120), the state of channel C12 as $0, and sends a marker

along channel C21. When site S1 receives this marker, it records the state of channel C21 as $80.

The $800 amount in the system is conserved in the recorded global state,

A=$600 B=$120 C12 =$0 C21 =$80

The recorded global state may not correspond to any of the global states that occurred

during the computation.

This happens because a process can change its state asynchronously before the markers it

sentare received by other sites and the other sites record their states.

Mutual exclusion in a distributed system states that only one process is allowed to execute the

critical section (CS) at any given time.

But the system could have passed through the recorded global states in some equivalent

executions.

The recorded global state is a valid state in an equivalent execution and if a stable property

(i.e., a property that persists) holds in the system before the snapshot algorithm begins, it holds in

the recorded global snapshot.

Therefore, a recorded global state is useful in detecting stable properties.

UNIT III

DISTRIBUTED MUTEX AND DEADLOCK

DISTRIBUTED MUTEX & DEADLOCK

Distributed mutual exclusion algorithms: Introduction – Preliminaries – Lamport‘s algorithm

–Ricart-Agrawala algorithm – Token-Based algorithms – Suzuki Kasami‘s broadcast

algorithm; Deadlock detection in distributed systems: Introduction – System model –

Preliminaries –Models of deadlocks – Chandy-Misra-Haas Algorithms for the AND model

and OR model.

3.1 DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS

• Mutual exclusion is a concurrency control property which is introduced to prevent

race conditions.

• It is the requirement that a process cannot access a shared resource while another

concurrent process is currently present or executing the same resource.

• Message passing is the sole means for implementing distributed mutual exclusion.

There are three basic approaches for implementing distributed mutual exclusion:

1. Token-based approach:

− A unique token (also known as the privilege message) is shared among the sites.

− A site is allowed to enter its CS if it possesses the token.

− Mutual Exclusion is ensured because the token is unique.

− Eg: Suzuki-Kasami’s Broadcast Algorithm, Raymond’s Tree- Based Algorithm

etc

2. Non-token-based approach:

− Two or more successive rounds of messages are exchanged among the sites to

determine which site will enter the CS next.

− Eg: Lamport's algorithm, Ricart–Agrawala algorithm

Quorum-based approach:

− Each site requests permission to execute the CS from a subset of sites

(called a quorum)

− Any two subsets of sites or Quorum contains a common site.

− This common site is responsible to make sure that only one request excutes the

CS at any time.

− Eg: Maekawa’s Algorithm

3.1.1 Preliminaries
• The system consists of N sites, S1, S2, S3, …, SN.

• Assume that a single process is running on each site.

• The process at site Si is denoted by pi.

• All these processes communicate asynchronously over an underlying

communication network.

• A site can be in one of the following three states: requesting the CS, executing the CS,

or neither requesting nor executing the CS.

• In the requesting the CS state, the site is blocked and cannot make further requests for

the CS.

• In the idle state, the site is executing outside the CS.

• In the token-based algorithms, a site can also be in a state where a site holding the

token is executing outside the CS. Such state is referred to as the idle token state.

• At any instant, a site may have several pending requests for CS. A site queues up

these requests and serves them one at a time.

• N denotes the number of processes or sites involved in invoking the critical section, T

denotes the average message delay, and E denotes the average critical section

execution time.

3.1.2 Requirements of mutual exclusion algorithms

• Safety property:

At any instant, only one process can execute the critical section. This is an

essential property of a mutual exclusion algorithm.

• Liveness property:

This property states the absence of deadlock and starvation. Two or more sites

should not endlessly wait for messages that will never arrive. time. This is an

important property of a mutual exclusion algorithm

• Fairness:

Fairness in the context of mutual exclusion means that each process gets a fair

chance to execute the CS. In mutual exclusion algorithms, the fairness property

generally means that the CS execution requests are executed in order of their arrival in

the system.

3.1.3 Performance metrics

➢ Message complexity: This is the number of messages that are required per CS

execution by a site.

➢ Synchronization delay: After a site leaves the CS, it is the time required and before

the next site enters the CS.

➢ Response time: This is the time interval a request waits for its CS execution to be

over after its request messages have been sent out. Thus, response time does not

include the time a request waits at a site before its request messages have been sent

out.

System throughput: This is the rate at which the system executes requests for the

CS. If SD is the synchronization delay and E is the average critical section execution

time.

Figure: Synchronization delay

Figure: Response Time

Low and High Load Performance:

▪ The performance of mutual exclusion algorithms is classified as two special loading

conditions, viz., “low load” and “high load”.

▪ The load is determined by the arrival rate of CS execution requests.

▪ Under low load conditions, there is seldom more than one request for the critical

section present in the system simultaneously.

▪ Under heavy load conditions, there is always a pending request for critical section at a

site.

Best and worst case performance

▪ In the best case, prevailing conditions are such that a performance metric attains the

best possible value. For example, the best value of the response time is a roundtrip

message delay plus the CS execution time, 2T +E.

▪ For examples, the best and worst values of the response time are achieved when load

is, respectively, low and high;

▪ The best and the worse message traffic is generated at low and heavy load conditions,

respectively.

3.2 LAMPORT’S ALGORITHM

• Request for CS are executed in the increasing order of timestamps and time is

determined by logical clocks.

• Every site Si keeps a queue, request_queuei which contains mutual exclusion requests

ordered by their timestamps

• This algorithm requires communication channels to deliver messages the FIFO

order.Three types of messages are used Request, Reply and Release. These messages

with timestamps also updates logical clock

Fig: Lamport’s distributed mutual exclusion algorithm

To enter Critical section:

 When a site Si wants to enter the critical section, it sends a request message

Request(tsi, i) to all other sites and places the request on request_queuei. Here, Tsi

denotes the timestamp of Site Si.

 When a site Sj receives the request message REQUEST(tsi, i) from site Si, it returns a

timestamped REPLY message to site Si and places the request of site Si on

request_queuej

To execute the critical section:

• A site Si can enter the critical section if it has received the message with timestamp

larger than (tsi, i) from all other sites and its own request is at the top of

request_queuei.

To release the critical section:

When a site Si exits the critical section, it rSemoves its own request from the top of its request

queue and sends a timestamped RELEASE message to all other sites. When a site Sj receives the

timestamped RELEASSE message from site Si, it removes the request of Sia from its request

queue.

Fig) S1 and S2 are making requests for the CS

Fig) Site S1 enters the CS

Fig) Site S1 exists the CS and sends RELEASE messages

Fig) Site S2 enters the CS

Correctness

Theorem: Lamport’s algorithm achieves mutual exclusion.

Proof: Proof is by contradiction.

 Suppose two sites Si and Sj are executing the CS concurrently. For this to happen

conditions L1 and L2 must hold at both the sites concurrently.

 This implies that at some instant in time, say t, both Si and Sj have their own requests

at the top of their request queues and condition L1 holds at them. Without loss of
generality, assume that Si ’s request has smaller timestamp than the request of Sj .

 From condition L1 and FIFO property of the communication channels, it is clear that

at instant t the request of Si must be present in request queuej when Sj was executing

its CS. This implies that Sj ’s own request is at the top of its own request queue

when a smaller timestamp request, Si ’s request, is present in the request queuej – a

contradiction!

Theorem: Lamport’s algorithm is fair.

Proof: The proof is by contradiction.

 Suppose a site Si ’s request has a smaller timestamp than the request of another site Sj
and Sj is able to execute the CS before Si .

 For Sj to execute the CS, it has to satisfy the conditions L1 and L2. This implies

that at some instant in time say t, Sj has its own request at the top of its queue and it

has also received a message with timestamp larger than the timestamp of its request
from all other sites.

 But request queue at a site is ordered by timestamp, and according to our assumption

Si has lower timestamp. So Si ’s request must be placed ahead of the Sj ’s request in

the request queuej . This is a contradiction!

Message Complexity:

Lamport’s Algorithm requires invocation of 3(N – 1) messages per critical section execution.

These 3(N – 1) messages involves

• (N – 1) request messages

• (N – 1) reply messages

• (N – 1) release messages

Drawbacks of Lamport’s Algorithm:

• Unreliable approach: failure of any one of the processes will halt the progress

of entire system.

• High message complexity: Algorithm requires 3(N-1) messages per critical

section invocation.

To enter Critical section:

• When a site Si wants to enter the critical section, it send a timestamped

REQUEST message to all other sites.

• When a site Sj receives a REQUEST message from site Si, It sends a REPLY

message to site Si if and only if Site Sj is neither requesting nor currently executing

the critical section.

• In case Site Sj is requesting, the timestamp of Site Si‘s request is smaller than its

own request.

• Otherwise the request is deferred by site Sj.

To execute the critical section:

Site Si enters the critical section if it has received the REPLY message from all other

sites.

To release the critical section:

Upon exiting site Si sends REPLY message to all the deferred requests.

Performance:

Synchronization delay is equal to maximum message transmission time. It requires 3(N –

1) messages per CS execution. Algorithm can be optimized to 2(N – 1) messages by

omitting the REPLY message in some situations.

3.3 RICART–AGRAWALA ALGORITHM

• Ricart–Agrawala algorithm is an algorithm to for mutual exclusion in a

distributed system proposed by Glenn Ricart and Ashok Agrawala.

• This algorithm is an extension and optimization of Lamport’s Distributed

Mutual Exclusion Algorithm.

• It follows permission based approach to ensure mutual exclusion.

• Two type of messages (REQUEST and REPLY) are used and communication

channels are assumed to follow FIFO order.

• A site send a REQUEST message to all other site to get their permission to

enter critical section.

• A site send a REPLY message to other site to give its permission to enter the

critical section.

• A timestamp is given to each critical section request using Lamport’s logical clock.

• Timestamp is used to determine priority of critical section requests.

• Smaller timestamp gets high priority over larger timestamp.

• The execution of critical section request is always in the order of their timestamp.

 Fig: Ricart–Agrawala algorithm

Fig) site S1 and S2 each make a request for the CS

Fig) site S1 enters the CS

Fig) Site S1 exists the CS and sends a reply message to S2’s deferred

request

Fig) Site S2enters the CS

Theorem: Ricart-Agrawala algorithm achieves mutual exclusion.

Proof: Proof is by contradiction.

▪ Suppose two sites Si and Sj ‘ are executing the CS concurrently and Si ’s request has

higher priority than the request of Sj . Clearly, Si received Sj ’s request after it has

made its own request.

▪ Thus, Sj can concurrently execute the CS with Si only if Si returns a REPLY to Sj (in

response to Sj ’s request) before Si exits the CS.

▪ However, this is impossible because Sj ’s request has lower priority.

Therefore,Ricart- Agrawala algorithm achieves mutual exclusion.

Message Complexity:

Ricart–Agrawala algorithm requires invocation of 2(N – 1) messages per critical section

execution. These 2(N – 1) messages involve:

• (N – 1) request messages

• (N – 1) reply messages

Drawbacks of Ricart–Agrawala algorithm:

• Unreliable approach: failure of any one of node in the system can halt the progress

of the system. In this situation, the process will starve forever. The problem of

failure of node can be solved by detecting failure after some timeout.

Performance:

Synchronization delay is equal to maximum message transmission time It requires

2(N – 1) messages per Critical section execution.

3.4 SUZUKI–KASAMI‘s BROADCAST ALGORITHM

• Suzuki–Kasami algorithm is a token-based algorithm for achieving mutual

exclusion in distributed systems.

• This is modification of Ricart–Agrawala algorithm, a permission based (Non-

token based) algorithm which uses REQUEST and REPLY messages to ensure

mutual exclusion.

• In token-based algorithms, A site is allowed to enter its critical section if it

possesses the unique token.

• Non-token based algorithms uses timestamp to order requests for the critical

section where as sequence number is used in token based algorithms.

• Each requests for critical section contains a sequence number. This sequence

numberis used to distinguish old and current requests

To enter Critical section:

• When a site Si wants to enter the critical section and it does not have the token then

it increments its sequence number RNi[i] and sends a request message REQUEST(i,

sn) to all other sites in order to request the token.

• Here sn is update value of RNi[i]

• When a site Sj receives the request message REQUEST(i, sn) from site Si, it

sets RNj[i] to maximum of RNj[i] and sni.eRNj[i] = max(RNj[i], sn).

After updating RNj[i], Site Sj sends the token to site Si if it has token and RNj[i]

= LN[i] + 1

.

Fig: Suzuki–Kasami‘s broadcast

algorithm To execute the critical section:

• Site Si executes the critical section if it has acquired the token.

To release the critical section:

After finishing the execution Site Si exits the critical section and does following:

• sets LN[i] = RNi[i] to indicate that its critical section request RNi[i] has been executed

• For every site Sj, whose ID is not prsent in the token queue Q, it appends its ID to Q

if RNj[j] = LN[j] + 1 to indicate that site Sj has an outstanding request.

• After above updation, if the Queue Q is non-empty, it pops a site ID from the Q

and sends the token to site indicated by popped ID.

• If the queue Q is empty, it keeps the token

Correctness

Mutual exclusion is guaranteed because there is only one token in the system and a site holds

the token during the CS execution.
Theorem: A requesting site enters the CS in finite time.

Proof: Token request messages of a site Si reach other sites in finite time.

Since one of these sites will have token in finite time, site Si ’s request will be placed in the

token queue in finite time.

Since there can be at most N − 1 requests in front of this request in the token queue, site Si

will get the token and execute the CS in finite time.

Message Complexity:

The algorithm requires 0 message invocation if the site already holds the idle token at the

time of critical section request or maximum of N message per critical section execution.

This N messages involves

• (N – 1) request messages

• 1 reply message

Drawbacks of Suzuki–Kasami Algorithm:

• Non-symmetric Algorithm: A site retains the token even if it does not have

requested for critical section.

Performance:

Synchronization delay is 0 and no message is needed if the site holds the idle token at the

time of its request. In case site does not holds the idle token, the maximum

synchronization delay is equal to maximum message transmission time and a maximum of

N message is required per critical section invocation.

3.5 DEADLOCK DETECTION IN DISTRIBUTED SYSTEMS

Deadlock can neither be prevented nor avoided in distributed system as the system is

so vast that it is impossible to do so. Therefore, only deadlock detection can be

implemented. The techniques of deadlock detection in the distributed system require the

following:

• Progress: The method should be able to detect all the deadlocks in the system.

• Safety: The method should not detect false of phantom deadlocks.

There are three approaches to detect deadlocks in distributed systems.

Centralized approach:

• Here there is only one responsible resource to detect deadlock.

• The advantage of this approach is that it is simple and easy to implement, while the

drawbacks include excessive workload at one node, single point failure which in

turns makes the system less reliable.

Distributed approach:

• In the distributed approach different nodes work together to detect deadlocks.

No single point failure as workload is equally divided among all nodes.

• The speed of deadlock detection also increases.

Hierarchical approach:

• This approach is the most advantageous approach.

• It is the combination of both centralized and distributed approaches of

deadlock detection in a distributed system.

• In this approach, some selected nodes or cluster of nodes are responsible for

deadlock detection and these selected nodes are controlled by a single node.

System Model

• A distributed program is composed of a set of n asynchronous processes p1, p2, . .

. , pi , . . . , pn that communicates by message passing over the communication

network.

• Without loss of generality we assume that each process is running on a different

processor.

• The processors do not share a common global memory and communicate solely

by passing messages over the communication network.

• There is no physical global clock in the system to which processes have

instantaneous access.

• The communication medium may deliver messages out of order, messages may

be lost garbled or duplicated due to timeout and retransmission, processors may

fail and communication links may go down.
We make the following assumptions:

• The systems have only reusable resources.

• Processes are allowed to make only exclusive access to resources.

• There is only one copy of each resource.

• A process can be in two states: running or blocked.

• In the running state (also called active state), a process has all the needed

resources and is either executing or is ready for execution.

• In the blocked state, a process is waiting to acquire some resource.

Wait for graph

This is used for deadlock deduction. A graph is drawn based on the request and

acquirement of the resource. If the graph created has a closed loop or a cycle, then there is

a deadlock.

Preliminaries

3.6.1 Deadlock Handling Strategies

Handling of deadlock becomes highly complicated in distributed systems because

no site has accurate knowledge of the current state of the system and because every inter-

site communication involves a finite and unpredictable delay. There are three strategies for

handling deadlocks:

• Deadlock prevention:

− This is achieved either by having a process acquire all the needed resources

simultaneously before it begins executing or by preempting a process

which holds the needed resource.

− This approach is highly inefficient and impractical in distributed systems.

• Deadlock avoidance:

− A resource is granted to a process if the resulting global system state is

safe. This is impractical in distributed systems.

• Deadlock detection:

− This requires examination of the status of process-resource interactions

for presence of cyclic wait.

− Deadlock detection in distributed systems seems to be the best approach

to handle deadlocks in distributed systems.

3.6.2 Issues in deadlock Detection

Deadlock handling faces two major issues

1. Detection of existing deadlocks

Resolution of detected deadlocks

Deadlock Detection

− Detection of deadlocks involves addressing two issues namely maintenance of

the WFG and searching of the WFG for the presence of cycles or knots.

− In distributed systems, a cycle or knot may involve several sites, the search for

cycles greatly depends upon how the WFG of the system is represented across the

system.

− Depending upon the way WFG information is maintained and the search for cycles is

carried out, there are centralized, distributed, and hierarchical algorithms for

deadlock detection in distributed systems.

Correctness criteria

A deadlock detection algorithm must satisfy the following two conditions:

1. Progress-No undetected deadlocks:

The algorithm must detect all existing deadlocks in finite time. In other words, after

all wait-for dependencies for a deadlock have formed, the algorithm should not wait for any

more events to occur to detect the deadlock.
2. Safety -No false deadlocks:

The algorithm should not report deadlocks which do not exist. This is also called as called

phantom or false deadlocks

Resolution of a Detected Deadlock

• Deadlock resolution involves breaking existing wait-for dependencies between

the processes to resolve the deadlock.

• It involves rolling back one or more deadlocked processes and assigning

their resources to blocked processes so that they can resume execution.

• The deadlock detection algorithms propagate information regarding wait-

for dependencies along the edges of the wait-for graph.

• When a wait-for dependency is broken, the corresponding information should

be immediately cleaned from the system.

• If this information is not cleaned in a timely manner, it may result in detection

of phantom deadlocks.

3.7 MODELS OF DEADLOCKS

The models of deadlocks are explained based on their hierarchy. The diagrams illustrate

the working of the deadlock models. Pa, Pb, Pc, Pdare passive processes that had already

acquired the resources. Peis active process that is requesting the resource.

3.7.1 Single Resource Model

• A process can have at most one outstanding request for only one unit of a resource.

• The maximum out-degree of a node in a WFG for the single resource model can be

1, the presence of a cycle in the WFG shall indicate that there is a deadlock.

Fig: Deadlock in single resource model

3.7.2 AND Model

• In the AND model, a passive process becomes active (i.e., its activation condition

is

• fulfilled) only after a message from each process in its dependent set has arrived.

• In the AND model, a process can request more than one resource simultaneously and

the request is satisfied only after all the requested resources are granted to the process.

• The requested resources may exist at different locations.

Deadlock in OR model: a process Pi is blocked if it has a pending OR request to be satisfied.

• The out degree of a node in the WFG for AND model can be more than 1.

• The presence of a cycle in the WFG indicates a deadlock in the AND model.

• Each node of the WFG in such a model is called an AND node.

• In the AND model, if a cycle is detected in the WFG, it implies a deadlock but not

vice versa. That is, a process may not be a part of a cycle, it can still be deadlocked.

Fig: Deadlock in AND model

3.7.3 OR Model

• A process can make a request for numerous resources simultaneously and the

request is satisfied if any one of the requested resources is granted.

• Presence of a cycle in the WFG of an OR model does not imply a

deadlock in the OR model.

• In the OR model, the presence of a knot indicates a deadlock.

• With every blocked process, there is an associated set of processes called

dependent set.

• A process shall move from an idle to an active state on receiving a grant

message from any of the processes in its dependent set.

• A process is permanently blocked if it never receives a grant message from any of

the processes in its dependent set.

• A set of processes S is deadlocked if all the processes in S are permanently blocked.

• In short, a process is deadlocked or permanently blocked, if the following

conditionsare met:

1. Each of the process is the set S is blocked.

2. The dependent set for each process in S is a subset of S.

3. No grant message is in transit between any two processes in set S.

• A blocked process P is the set S becomes active only after receiving a grant

message from a process in its dependent set, which is a subset of S.

Fig: OR Model

3.7.4 Model (p out of q model)

• This is a variation of AND-OR model.

• This allows a request to obtain any k available resources from a pool of n

resources. Both the models are the same in expressive power.

• This favours more compact formation of a request.

• Every request in this model can be expressed in the AND-OR model and vice-versa.

• Note that AND requests for p resources can be stated as and OR requests for

p resources can be stated as

Fig: p out of q Model

3.7.5 Unrestricted model

• No assumptions are made regarding the underlying structure of resource requests.

• In this model, only one assumption that the deadlock is stable is made and hence it

is the most general model.

• This model helps separate concerns: Concerns about properties of the problem

(stability and deadlock) are separated from underlying distributed systems

computations (e.g., message passing versus synchronous communication).

3.8 CHANDY–MISRA–HAAS ALGORITHM FOR THE AND MODEL

This is considered an edge-chasing, probe-based algorithm.

It is also considered one of the best deadlock detection algorithms for distributed

systems.

If a process makes a request for a resource which fails or times out, the process generates a

probe message and sends it to each of the processes holding one or more of its requested

resources.

This algorithm uses a special message called probe, which is a triplet (i, j,k), denoting that it

belongs to a deadlock detection initiated for process Pi and it is being sent by the home

site of process Pj to the home site of process Pk.

Each probe message contains the following information:

➢ the id of the process that is blocked (the one that initiates the probe message);

➢ the id of the process is sending this particular version of the probe message;

➢ the id of the process that should receive this probe message.

A probe message travels along the edges of the global WFG graph, and a deadlock is

detected when a probe message returns to the process that initiated it.

A process Pj is said to be dependent on another process Pk if there exists a sequence of

processes Pj, Pi1 , Pi2 , . . . , Pim, Pksuch that each process except Pkin the sequence is

blocked and each process, except the Pj, holds a resource for which the previous process in

the sequence is waiting.

Process Pj is said to be locally dependent upon process Pk if Pj is dependent upon Pk

and both the processes are on the same site.

When a process receives a probe message, it checks to see if it is also waiting for

resources

If not, it is currently using the needed resource and will eventually finish and release the

resource.

If it is waiting for resources, it passes on the probe message to all processes it knows to be

holding resources it has itself requested.

The process first modifies the probe message, changing the sender and receiver

ids. If a process receives a probe message that it recognizes as having initiated, it

knows there is a cycle in the system and thus, deadlock.

Data structures

Each process Pi maintains a boolean array, dependen ti, where dependent(j) is true only if

Piknows that Pj is dependent on it. Initially, dependen ti (j) is false for all i and j.

Fig : Chandy–Misra–Haas algorithm for the AND model

Performance analysis

In the algorithm, one probe message is sent on every edge of the WFG which

connects processes on two sites.

The algorithm exchanges at most m(n − 1)/2 messages to detect a deadlock that

involves m processes and spans over n sites.

The size of messages is fixed and is very small (only three integer words).

The delay in detecting a deadlock is O(n).

Advantages:

It is easy to implement.

Each probe message is of fixed

length. There is very little

computation.

There is very little overhead.

There is no need to construct a graph, nor to pass graph information to other sites.

This algorithm does not find false (phantom) deadlock.

There is no need for special data structures.

3.9 CHANDY MISRA HAAS ALGORITHM FOR THE OR MODEL

A blocked process determines if it is deadlocked by initiating a diffusion

computation. Two types of messages are used in a diffusion computation:

➢ query(i, j, k)

➢ reply(i, j, k)

denoting that they belong to a diffusion computation initiated by a process pi and are

being sent from process pj to process pk.

A blocked process initiates deadlock detection by sending query messages to all

processes in its dependent set.

If an active process receives a query or reply message, it discards it. When a blocked

process Pk receives a query(i, j, k) message, it takes the following actions:

1. If this is the first query message received by Pk for the deadlock detection

initiated by Pi, then it propagates the query to all the processes in its

dependent set and sets a local variable numk (i) to the number of query

messages sent.

2. If this is not the engaging query, then Pk returns a reply message to it

immediately provided Pk has been continuously blocked since it received

the corresponding engaging query. Otherwise, it discards the query.

• Process Pk maintains a boolean variable waitk(i) that denotes the fact that it

has been continuously blocked since it received the last engaging query

from process Pi.

• When a blocked process Pk receives a reply(i, j, k) message, it

decrements numk(i) only if waitk(i) holds.

• A process sends a reply message in response to an engaging query only after

it has received a reply to every query message it has sent out for this engaging

query.

• The initiator process detects a deadlock when it has received reply messages

to all the query messages it has sent out.

Fig: Chandy–Misra–Haas algorithm for the OR model

Performance analysis

For every deadlock detection, the algorithm exchanges e query messages and e reply

messages, where e = n(n – 1) is the number of edges.

 UNIT IV CONSENSUS AND RECOVERY

Consensus and Agreement Algorithms: Problem Definition – Overview of Results – Agreement in a

Failure-Free System(Synchronous and Asynchronous) – Agreement in Synchronous Systems with

Failures; Checkpointing and Rollback Recovery: Introduction – Background and Definitions – Issues

in Failure Recovery – Checkpoint-based Recovery – Coordinated Checkpointing Algorithm –

– Algorithm for Asynchronous Checkpointing and Recovery

Problem definition

Agreement among the processes in a distributed system is a fundamental requirement for a

wide range of applications. Many forms of coordination require the processes to exchange

information to negotiate with one another and eventually reach a common understanding or

agreement, before taking application-specific actions. A classical example is that of the

commit decision in database systems, wherein the processes collectively decide whether to

commit or abort a transaction that they participate in.

We first state some assumptions underlying our study of agreement algorithms:

• Failure models Among the n processes in the system, at most f processes can be faulty. A

faulty process can behave in any manner allowed by the failure model assumed. The various

failure models – fail-stop, send omission and receive omission, and Byzantine failures.

• Synchronous/asynchronous communication If a failure-prone process chooses to send a

message to process Pi but fails, then Pi cannot detect the non-arrival of the message in an

asynchronous system. In a synchronous system, however, the scenario in which a message

has not been sent can be recognized by the intended recipient, at the end of the round.

• Network connectivity The system has full logical connectivity, i.e., each process can

communicate with any other by direct message passing.

• Sender identification A process that receives a message always knows the identity of the

sender process.

• Channel reliability The channels are reliable, and only the processes may fail (under one of

various failure models).

• Authenticated vs. non-authenticated messages With unauthenticated messages, when a

faulty process relays a message to other processes, (i) it can forge the message and claim that

it was received from another process, and (ii) it can also tamper with the contents of a

received message before relaying it. When a process receives a message, it has no way to

verify its authenticity. An unauthenticated message is also called an oral message or an

unsigned message. Using authentication via techniques such as digital signatures, it is easier

to solve the agreement problem because, if some process forges a message or tampers with

the contents of a received message before relaying it, the recipient can detect the forgery or

tampering. Thus, faulty processes can inflict less damage.

• Agreement variable The agreement variable may be boolean or multivalued, and need not

be an integer.

The Byzantine agreement

The Byzantine agreement problem requires a designated process, called the source process,

with an initial value

Problem definition agreement with the other processes about its initial value, subject to the

following conditions:

• Agreement All non-faulty processes must agree on the same value.

• Validity If the source process is non-faulty, then the agreed upon value by all the non-faulty

processes must be the same as the initial value of the source.

• Termination Each non-faulty process must eventually decide on a value. The validity

condition rules out trivial solutions, such as one in which the agreed upon value is a constant.

The consensus problem

The consensus problem differs from the Byzantine agreement problem in that each process

has an initial value and all the correct processes must agree on a single value

• Agreement All non-faulty processes must agree on the same (single) value.

• Validity If all the non-faulty processes have the same initial value, then the agreed upon

value by all the non-faulty processes must be that same value.

• Termination Each non-faulty process must eventually decide on a value.

The interactive consistency problem

The interactive consistency problem differs from the Byzantine agreement problem in that

each process has an initial value, and all the correct processes must agree upon a set of

values, with one value for each process

• Agreement All non-faulty processes must agree on the same array of values A[v1…vn]

• Validity If process i is non-faulty and its initial value is vi, then all nonfaulty processes

agree on vi as the ith element of the array A. If process j is faulty, then the non-faulty

processes can agree on any value for A[j].

• Termination Each non-faulty process must eventually decide on the array A

Overview of results:

Failure

mode

Synchronous system

(message-passing and

shared memory)

Asynchronous system

(message-passing and

shared memory)

No Failure agreement attainable;

common knowledge attainable

agreement attainable;

concurrent common knowledge

Crash Failure agreement attainable

f < n processes

agreement not attainable

Byzantine

Failure

agreement attainable

f ≤ [(n - 1)/3] Byzantine processes

agreement not attainable

AGREEMENT IN A FAILURE-FREE SYSTEM (SYNCHRONOUS OR

ASYNCHRONOUS)

In a failure-free system, consensus can be reached by collecting information from the

different processes, arriving at a “decision,” and distributing this decision in the system.

A distributed mechanism would have each process broadcast its values to others, and each

process computes the same function on the values received.

The decision can be reached by using an applicationspecific function – some simple examples

being the majority, max, and min functions. Algorithms to collect the initial values and then

distribute the decision may be based on the token circulation on a logical ring, or the three-

phase

Consensus and agreement algorithms tree-based broadcast–converge cast–broadcast, or direct

communication with all nodes.

AGREEMENT IN (MESSAGE-PASSING) SYNCHRONOUS SYSTEMS WITH

FAILURES

CONSENSUS ALGORITHM FOR CRASH FAILURES (SYNCHRONOUS SYSTEM)

• The consensus algorithm for n processes where up to f processes where f < n may fail in a

fail stop failure model.

• Here the consensus variable x is integer value; each process has initial value xi. If up to f

failures are to be tolerated than algorithm has f+1 rounds, in each round a process i sense the

value of its variable xi to all other processes if that value has not been sent before.

• So, of all the values received within that round and its own value xi at that start of the round

the process takes minimum and updates xi occur f + 1 rounds the local value xi guaranteed to

be the consensus value.

• If one process is faulty, among three processes then f = 1. So the agreement requires f + 1

that is equal to two rounds.

• If it is faulty let us say it will send 0 to 1 process and 1 to another process i, j and k. Now,

on receiving one on receiving 0 it will broadcast 0 over here and this particular process on

receiving 1 it will broadcast 1 over here.

• So, this will complete one round in this one round and this particular process on receiving 1

it will send 1 over here and this on the receiving 0 it will send 0 over here.

• The agreement condition is satisfied because in the f+ 1 rounds, there must be at least one round in which

no process failed.

• In this round, say round r, all the processes that have not failed so far succeed in broadcasting their

values, and all these processes take the minimum of the values broadcast and received in that round.

• Thus, the local values at the end of the round are the same, say x r i for all non-failed processes.

• In further rounds, only this value may be sent by each process at most once, and no process i will update

its value x r i.

• The validity condition is satisfied because processes do not send fictitious values in this failure model.

• For all i, if the initial value is identical, then the only value sent by any process is the value that has been

agreed upon as per the agreement condition.

• The termination condition is seen to be satisfied.

Complexity: The complexity of this particular algorithm is it requires f + 1 rounds where f < n and the

number of messages is O(n2)in each round and each message has one integers hence the total number

of messages is O((f+1)· n 2) is the total number of rounds and in each round n 2 messages are required.

Consensus algorithms for Byzantine failures (synchronous system)

STEPS FOR BYZANTINE GENERALS (ITERATIVE FORMULATION),
SYNCHRONOUS, MESSAGE-PASSING:

STEPS FOR BYZANTINE GENERALS (RECURSIVE FORMULATION),

SYNCHRONOUS, MESSAGE-PASSING:

CODE FOR THE PHASE KING ALGORITHM:

Each phase has a unique "phase king" derived, say, from

PID. Each phase has two rounds:

• 1 in 1st round, each process sends its estimate to all other processes.

• 2 in 2nd round, the "Phase king" process arrives at an estimate based on the

values it received in 1st round, and broadcasts its new estimate to all others.

Fig. Message pattern for the phase-king algorithm.

PHASE KING ALGORITHM CODE:

(f + 1) phases, (f + 1)[(n - 1)(n + 1)] messages, and can tolerate up to f < dn=4e

malicious processes

Correctness Argument

• 1 Among f + 1 phases, at least one phase k where phase-king is non-malicious.

• 2 In phase k, all non-malicious processes Pi and Pj will have same

estimate of consensus value as Pk does.

• Pi and Pj use their own majority values. Pi 's mult > n=2 + f)

• Pi uses its majority value; Pj uses phase-king's tie-breaker value. (Pi’s mult >

n=2 + f , Pj 's mult > n=2 for same value)

• Pi and Pj use the phase-king's tie-breaker value. (In the phase in which Pk

is non- malicious, it sends same value to Pi and Pj)

In all 3 cases, argue that Pi and Pj end up with same value as estimate

• If all non-malicious processes have the value x at the start of a phase, they

will continue to have x as the consensus value at the end of the phase.

Check pointing and rollback recovery: Introduction

• Rollback recovery protocols restore the system back to a consistent state after a failure,

• It achieves fault tolerance by periodically saving the state of a process during the failure-

free execution

• It treats a distributed system application as a collection of processes that communicate

over a network

Checkpoints

The saved state is called a checkpoint, and the procedure of restarting from a previously check

pointed state is called rollback recovery. A checkpoint can be saved on either the stable storage

or the volatile storage

Why is rollback recovery of distributed systems complicated?

Messages induce inter-process dependencies during failure-free operation

Rollback propagation

The dependencies among messages may force some of the processes that did not fail to roll back.

This phenomenon of cascaded rollback is called the domino effect.

Uncoordinated check pointing

If each process takes its checkpoints independently, then the system cannot avoid the domino

effect – this scheme is called independent or uncoordinated check pointing

Techniques that avoid domino effect

1. Coordinated check pointing rollback recovery - Processes coordinate their checkpoints to

form a system-wide consistent state

2. Communication-induced check pointing rollback recovery - Forces each process to take

checkpoints based on information piggybacked on the application.

3. Log-based rollback recovery - Combines check pointing with logging of non-

deterministic events

• relies on piecewise deterministic (PWD) assumption.

Background and definitions

System model

• A distributed system consists of a fixed number of processes, P1, P2,…_ PN , which

communicate only through messages.

• Processes cooperate to execute a distributed application and interact with the outside

world by receiving and sending input and output messages, respectively.

• Rollback-recovery protocols generally make assumptions about the reliability of the inter-

process communication.

• Some protocols assume that the communication uses first-in-first-out (FIFO) order, while

other protocols assume that the communication subsystem can lose, duplicate, or reorder

messages.

• Rollback-recovery protocols therefore must maintain information about the internal

interactions among processes and also the external interactions with the outside world.

An example of a distributed system with three processes.

A local checkpoint

• All processes save their local states at certain instants of time

• A local check point is a snapshot of the state of the process at a given instance

• Assumption

– A process stores all local checkpoints on the stable storage

– A process is able to roll back to any of its existing local checkpoints

• 𝐶𝑖,𝑘 – The kth local checkpoint at process 𝑃𝑖

• 𝐶𝑖,0 – A process 𝑃𝑖 takes a checkpoint 𝐶𝑖,0 before it starts execution

Consistent states

• A global state of a distributed system is a collection of the individual states of all

participating processes and the states of the communication channels

• Consistent global state

– a global state that may occur during a failure-free execution of distribution of

distributed computation

– if a process‟s state reflects a message receipt, then the state of the

corresponding sender must reflect the sending of the message

• A global checkpoint is a set of local checkpoints, one from each process

• A consistent global checkpoint is a global checkpoint such that no message is sent by a

process after taking its local point that is received by another process before taking its

checkpoint.

• For instance, Figure shows two examples of global states.

• The state in fig (a) is consistent and the state in Figure (b) is inconsistent.

• Note that the consistent state in Figure (a) shows message m1 to have been sent but not

yet received, but that is alright.

• The state in Figure (a) is consistent because it represents a situation in which every

message that has been received, there is a corresponding message send event.

• The state in Figure (b) is inconsistent because process P2 is shown to have received m2

but the state of process P1 does not reflect having sent it.

• Such a state is impossible in any failure-free, correct computation. Inconsistent states

occur because of failures.

Interactions with outside world

A distributed system often interacts with the outside world to receive input data or deliver the

outcome of a computation. If a failure occurs, the outside world cannot be expected to roll back.

For example, a printer cannot roll back the effects of printing a character

Outside World Process (OWP)

• It is a special process that interacts with the rest of the system through message passing.

• It is therefore necessary that the outside world see a consistent behavior of the system

despite failures.

• Thus, before sending output to the OWP, the system must ensure that the state from

which the output is sent will be recovered despite any future failure.

A common approach is to save each input message on the stable storage before allowing the

application program to process it.

An interaction with the outside world to deliver the outcome of a computation is shown on the

process-line by the symbol “||”.

Different types of Messages

1. In-transit message

• messages that have been sent but not yet received

2. Lost messages

• messages whose “send‟ is done but “receive‟ is undone due to rollback

3. Delayed messages

• messages whose “receive‟ is not recorded because the receiving process was

either down or the message arrived after rollback

4. Orphan messages

• messages with “receive‟ recorded but message “send‟ not recorded

• do not arise if processes roll back to a consistent global state

5. Duplicate messages

• arise due to message logging and replaying during process recovery

In-transit messages

In Figure , the global state {C1,8 , C2, 9 , C3,8, C4,8} shows that message m1 has been sent but

not yet received. We call such a message an in-transit message. Message m2 is also an in-transit

message.

Delayed messages

Messages whose receive is not recorded because the receiving process was either down or the

message arrived after the rollback of the receiving process, are called delayed messages. For

example, messages m2 and m5 in Figure are delayed messages.

Lost messages

Messages whose send is not undone but receive is undone due to rollback are called lost

messages. This type of messages occurs when the process rolls back to a checkpoint prior to

reception of the message while the sender does not rollback beyond the send operation of the

message. In Figure , message m1 is a lost message.

Duplicate messages

• Duplicate messages arise due to message logging and replaying during process

recovery. For example, in Figure, message m4 was sent and received before the

rollback. However, due to the rollback of process P4 to C4,8 and process P3 to C3,8,

both send and receipt of message m4 are undone.

• When process P3 restarts from C3,8, it will resend message m4.

• Therefore, P4 should not replay message m4 from its log.

• If P4 replays message m4, then message m4 is called a duplicate message.

Issues in failure recovery

In a failure recovery, we must not only restore the system to a consistent state, but also

appropriately handle messages that are left in an abnormal state due to the failure and recovery

• The computation comprises of three processes Pi, Pj , and Pk, connected through a

communication network. The processes communicate solely by exchanging messages over fault

free, FIFO communication channels.

• Processes Pi, Pj , and Pk, have taken checkpoints {Ci,0, Ci,1}, {Cj,0, Cj,1, Cj,2}, and {Ck,0,

Ck,1}, respectively, and these processes have exchanged messages A to J

Suppose process Pi fails at the instance indicated in the figure. All the contents of the volatile

memory of Pi are lost and, after Pi has recovered from the failure, the system needs to be

restored to a consistent global state from where the processes can resume their execution.

• Process Pi’s state is restored to a valid state by rolling it back to its most recent checkpoint

Ci,1. To restore the system to a consistent state, the process Pj rolls back to checkpoint Cj,1

because the rollback of process Pi to checkpoint Ci,1 created an orphan message H (the receive

event of H is recorded at process Pj while the send event of H has been undone at process Pi).

• Pj does not roll back to checkpoint Cj,2 but to checkpoint Cj,1. An orphan message I is created

due to the roll back of process Pj to checkpoint Cj,1. To eliminate this orphan message, process

Pk rolls back to checkpoint Ck,1.

• Messages C, D, E, and F are potentially problematic. Message C is in transit during the failure

and it is a delayed message. The delayed message C has several possibilities: C might arrive at

process Pi before it recovers, it might arrive while Pi is recovering, or it might arrive after Pi has

completed recovery. Each of these cases must be dealt with correctly.

• Message D is a lost message since the send event for D is recorded in the restored state for

process Pj , but the receive event has been undone at process Pi. Process Pj will not resend D

without an additional mechanism.

• Messages E and F are delayed orphan messages and pose perhaps the most serious problem of

all the messages. When messages E and F arrive at their respective destinations, they must be

discarded since their send events have been undone. Processes, after resuming execution from

their checkpoints, will generate both of these messages.

• Lost messages like D can be handled by having processes keep a message log of all the sent

messages. So when a process restores to a checkpoint, it replays the messages from its log to

handle the lost message problem.

• Overlapping failures further complicate the recovery process. If overlapping failures are to be

tolerated, a mechanism must be introduced to deal with amnesia and the resulting

inconsistencies.

Checkpoint-based recovery

Checkpoint-based rollback-recovery techniques can be classified into three categories:

1. Uncoordinated checkpointing

2. Coordinated checkpointing

3. Communication-induced checkpointing

1. Uncoordinated Checkpointing

• Each process has autonomy in deciding when to take checkpoints

• Advantages

The lower runtime overhead during normal execution

• Disadvantages

1. Domino effect during a recovery

2. Recovery from a failure is slow because processes need to iterate to find a

consistent set of checkpoints

3. Each process maintains multiple checkpoints and periodically invoke a

garbage collection algorithm

4. Not suitable for application with frequent output commits

• The processes record the dependencies among their checkpoints caused by message

exchange during failure-free operation

• The following direct dependency tracking technique is commonly used in uncoordinated

checkpointing.

Direct dependency tracking technique

• Assume each process 𝑃𝑖 starts its execution with an initial checkpoint 𝐶𝑖,0

• 𝐼𝑖,𝑥 : checkpoint interval, interval between 𝐶𝑖,𝑥−1 and 𝐶𝑖,𝑥

• When 𝑃𝑗 receives a message m during 𝐼𝑗,𝑦 , it records the dependency from 𝐼𝑖,𝑥 to 𝐼𝑗,𝑦,

which is later saved onto stable storage when 𝑃𝑗 takes 𝐶𝑗,𝑦

• When a failure occurs, the recovering process initiates rollback by broadcasting a

dependency request message to collect all the dependency information maintained by

each process.

• When a process receives this message, it stops its execution and replies with the

dependency information saved on the stable storage as well as with the dependency

information, if any, which is associated with its current state.

• The initiator then calculates the recovery line based on the global dependency

information and broadcasts a rollback request message containing the recovery line.

• Upon receiving this message, a process whose current state belongs to the recovery line

simply resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by

the recovery line.
2. Coordinated Checkpointing

In coordinated checkpointing, processes orchestrate their checkpointing activities so that all

local checkpoints form a consistent global state

Types

1. Blocking Checkpointing: After a process takes a local checkpoint, to prevent orphan

messages, it remains blocked until the entire checkpointing activity is complete

Disadvantages: The computation is blocked during the checkpointing

2. Non-blocking Checkpointing: The processes need not stop their execution while taking

checkpoints. A fundamental problem in coordinated checkpointing is to prevent a process

from receiving application messages that could make the checkpoint inconsistent.

Example (a) : Checkpoint inconsistency

• Message m is sent by 𝑃0 after receiving a checkpoint request from the checkpoint

coordinator

• Assume m reaches 𝑃1 before the checkpoint request

• This situation results in an inconsistent checkpoint since checkpoint 𝐶1,𝑥 shows the

receipt of message m from 𝑃0, while checkpoint 𝐶0,𝑥 does not show m being sent from

𝑃0

Example (b) : A solution with FIFO channels

• If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint

message on each channel by a checkpoint request, forcing each process to take a

checkpoint before receiving the first post-checkpoint message

Impossibility of min-process non-blocking checkpointing

• A min-process, non-blocking checkpointing algorithm is one that forces only a minimum

number of processes to take a new checkpoint, and at the same time it does not force any

process to suspend its computation.

Algorithm

• The algorithm consists of two phases. During the first phase, the checkpoint initiator

identifies all processes with which it has communicated since the last checkpoint and

sends them a request.

• Upon receiving the request, each process in turn identifies all processes it has

communicated with since the last checkpoint and sends them a request, and so on, until

no more processes can be identified.

• During the second phase, all processes identified in the first phase take a checkpoint. The

result is a consistent checkpoint that involves only the participating processes.

• In this protocol, after a process takes a checkpoint, it cannot send any message until the

second phase terminates successfully, although receiving a message after the checkpoint

has been taken is allowable.

3. Communication-induced Checkpointing

Communication-induced checkpointing is another way to avoid the domino effect, while

allowing processes to take some of their checkpoints independently. Processes may be forced to

take additional checkpoints

Two types of checkpoints

1. Autonomous checkpoints

2. Forced checkpoints

The checkpoints that a process takes independently are called local checkpoints, while those that

a process is forced to take are called forced checkpoints.

• Communication-induced check pointing piggybacks protocol- related information on

each application message

• The receiver of each application message uses the piggybacked information to determine

if it has to take a forced checkpoint to advance the global recovery line

• The forced checkpoint must be taken before the application may process the contents of

the message

• In contrast with coordinated check pointing, no special coordination messages are

exchanged

Two types of communication-induced checkpointing

1. Model-based checkpointing

2. Index-based checkpointing.

Model-based checkpointing

• Model-based checkpointing prevents patterns of communications and checkpoints

that could result in inconsistent states among the existing checkpoints.

• No control messages are exchanged among the processes during normal operation.

All information necessary to execute the protocol is piggybacked on application

messages

• There are several domino-effect-free checkpoint and communication model.

• The MRS (mark, send, and receive) model of Russell avoids the domino effect by

ensuring that within every checkpoint interval all message receiving events precede

all message-sending events.

Index-based checkpointing.

• Index-based communication-induced checkpointing assigns monotonically increasing

indexes to checkpoints, such that the checkpoints having the same index at different

processes form a consistent state.

KOO AND TOUEG COORDINATED CHECKPOINTING AND RECOVERY

TECHNIQUE:

• Koo and Toueg coordinated check pointing and recovery technique takes a consistent set

of checkpoints and avoids the domino effect and livelock problems during the recovery.

• Includes 2 parts: the check pointing algorithm and the recovery algorithm

A. The Checkpointing Algorithm

The checkpoint algorithm makes the following assumptions about the distributed system:

• Processes communicate by exchanging messages through communication channels.

• Communication channels are FIFO.

• Assume that end-to-end protocols (the sliding window protocol) exist to handle with

message loss due to rollback recovery and communication failure.

• Communication failures do not divide the network.

The checkpoint algorithm takes two kinds of checkpoints on the stable storage: Permanent and

Tentative.

A permanent checkpoint is a local checkpoint at a process and is a part of a consistent global

checkpoint.

A tentative checkpoint is a temporary checkpoint that is made a permanent checkpoint on the

successful termination of the checkpoint algorithm.

The algorithm consists of two phases.

First Phase

1. An initiating process Pi takes a tentative checkpoint and requests all other processes to

take tentative checkpoints. Each process informs Pi whether it succeeded in taking a

tentative checkpoint.

2. A process says “no” to a request if it fails to take a tentative checkpoint

3. If Pi learns that all the processes have successfully taken tentative checkpoints, Pi decides

that all tentative checkpoints should be made permanent; otherwise, Pi decides that all the

tentative checkpoints should be thrown-away.

Second Phase

1. Pi informs all the processes of the decision it reached at the end of the first phase.

2. A process, on receiving the message from Pi will act accordingly.

3. Either all or none of the processes advance the checkpoint by taking permanent

checkpoints.

4. The algorithm requires that after a process has taken a tentative checkpoint, it cannot

send messages related to the basic computation until it is informed of Pi’s decision.

Correctness: for two reasons

i. Either all or none of the processes take permanent checkpoint

ii. No process sends message after taking permanent checkpoint

An Optimization

The above protocol may cause a process to take a checkpoint even when it is not necessary for

consistency. Since taking a checkpoint is an expensive operation, we avoid taking checkpoints.

B. The Rollback Recovery Algorithm

The rollback recovery algorithm restores the system state to a consistent state after a failure. The

rollback recovery algorithm assumes that a single process invokes the algorithm. It assumes that

the checkpoint and the rollback recovery algorithms are not invoked concurrently. The rollback

recovery algorithm has two phases.

First Phase

1. An initiating process Pi sends a message to all other processes to check if they all are

willing to restart from their previous checkpoints.

2. A process may reply “no” to a restart request due to any reason (e.g., it is already

participating in a check pointing or a recovery process initiated by some other process).

3. If Pi learns that all processes are willing to restart from their previous checkpoints, Pi

decides that all processes should roll back to their previous checkpoints. Otherwise,

4. Pi aborts the roll back attempt and it may attempt a recovery at a later time.

Optimization: May not to recover all, since some of the processes did not change

anything

Second Phase

1. Pi propagates its decision to all the processes.

2. On receiving Pi’s decision, a process acts accordingly.

3. During the execution of the recovery algorithm, a process cannot send messages related

to the underlying computation while it is waiting for Pi’s decision.

Correctness: Resume from a consistent state

Optimization: May not to recover all, since some of the processes did not change anything

The above protocol, in the event of failure of process X, the above protocol will require

processes X, Y, and Z to restart from checkpoints x2, y2, and z2, respectively.

Process Z need not roll back because there has been no interaction between process Z and the

other two processes since the last checkpoint at Z.

ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY:

The algorithm of Juang and Venkatesan for recovery in a system that uses asynchronous check

pointing.

A. System Model and Assumptions

The algorithm makes the following assumptions about the underlying system:

• The communication channels are reliable, deliver the messages in FIFO order and have

infinite buffers.

• The message transmission delay is arbitrary, but finite.

• Underlying computation/application is event-driven: process P is at state s, receives

message m, processes the message, moves to state s’ and send messages out. So the

triplet (s, m, msgs_sent) represents the state of P

Two type of log storage are maintained:

– Volatile log: short time to access but lost if processor crash. Move to stable log

periodically.

– Stable log: longer time to access but remained if crashed

A. Asynchronous Check pointing

– After executing an event, the triplet is recorded without any synchronization with

other processes.

– Local checkpoint consist of set of records, first are stored in volatile log, then

moved to stable log.

B. The Recovery Algorithm

Notations and data structure

The following notations and data structure are used by the algorithm:

• RCVDi←j(CkPti) represents the number of messages received by processor pi from processor

pj , from the beginning of the computation till the checkpoint CkPti.

• SENTi→j(CkPti) represents the number of messages sent by processor pi to processor pj , from

the beginning of the computation till the checkpoint CkPti.

Basic idea

• Since the algorithm is based on asynchronous check pointing, the main issue in the

recovery is to find a consistent set of checkpoints to which the system can be restored.

• The recovery algorithm achieves this by making each processor keep track of both the

number of messages it has sent to other processors as well as the number of messages it

has received from other processors.

• Whenever a processor rolls back, it is necessary for all other processors to find out if any

message has become an orphan message. Orphan messages are discovered by comparing

the number of messages sent to and received from neighboring processors.

For example, if RCVDi←j(CkPti) > SENTj→i(CkPtj) (that is, the number of messages received

by processor pi from processor pj is greater than the number of messages sent by processor pj to

processor pi, according to the current states the processors), then one or more messages at

processor pj are orphan messages.

The Algorithm

When a processor restarts after a failure, it broadcasts a ROLLBACK message that it had failed

Procedure RollBack_Recovery

processor pi executes the following:

STEP (a)

if processor pi is recovering after a failure then

CkPti := latest event logged in the stable storage

else

CkPti := latest event that took place in pi {The latest event at pi can be either in stable or in

volatile storage.}

end if

STEP (b)

for k = 1 1 to N {N is the number of processors in the system} do

for each neighboring processor pj do

compute SENTi→j(CkPti)

send a ROLLBACK(i, SENTi→j(CkPti)) message to pj

end for

for every ROLLBACK(j, c) message received from a neighbor j do

if RCVDi←j(CkPti) > c {Implies the presence of orphan messages} then

find the latest event e such that RCVDi←j(e) = c {Such an event e may be in the volatile storage

or stable storage.}

CkPti := e

end if

end for

end for{for k}

D. An Example

Consider an example shown in Figure 2 consisting of three processors. Suppose processor Y

fails and restarts. If event ey2 is the latest checkpointed event at Y, then Y will restart from the

state corresponding to ey2.

Figure 2: An example of Juan-Venkatesan algorithm.

• Because of the broadcast nature of ROLLBACK messages, the recovery algorithm is

initiated at processors X and Z.

• Initially, X, Y, and Z set CkPtX ← ex3, CkPtY ← ey2 and CkPtZ ← ez2, respectively,

and X, Y, and Z send the following messages during the first iteration:

• Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

• X sends ROLLBACK(X,2) to Y and ROLLBACK(X,0) to Z;

• Z sends ROLLBACK(Z,0) to X and ROLLBACK(Z,1) to Y.

Since RCVDX←Y (CkPtX) = 3 > 2 (2 is the value received in the ROLLBACK(Y,2) message

from Y), X will set CkPtX to ex2 satisfying RCVDX←Y (ex2) = 1≤ 2.

Since RCVDZ←Y (CkPtZ) = 2 > 1, Z will set CkPtZ to ez1 satisfying RCVDZ←Y (ez1) = 1 ≤

1.

At Y, RCVDY←X(CkPtY) = 1 < 2 and RCVDY←Z(CkPtY) = 1 = SENTZ←Y (CkPtZ).

Y need not roll back further.

In the second iteration, Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

Z sends ROLLBACK(Z,1) to Y and ROLLBACK(Z,0) to X;

X sends ROLLBACK(X,0) to Z and ROLLBACK(X, 1) to Y.

If Y rolls back beyond ey3 and loses the message from X that caused ey3, X can resend this

message to Y because ex2 is logged at X and this message available in the log. The second and

third iteration will progress in the same manner. The set of recovery points chosen at the end of

the first iteration, {ex2, ey2, ez1}, is consistent, and no further rollback occurs.

